Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Oppiskele Challenge: Figures' Linear Transformations | Linear Algebra
Mathematics for Data Analysis and Modeling
course content

Kurssisisältö

Mathematics for Data Analysis and Modeling

Mathematics for Data Analysis and Modeling

1. Basic Mathematical Concepts and Definitions
2. Linear Algebra
3. Mathematical Analysis

book
Challenge: Figures' Linear Transformations

Tehtävä

Swipe to start coding

Linear transformations of the figures are commonly used in computer graphics. There are 2 main types of linear transformations:

  1. Rotation transformation rotates a figure around a specific point or axis.
  2. Scale transformation resizes a figure by changing its size along each axis.

Your task is to apply all these transformations to a rectangle one by one. As a result, we will have a composition of transformations:

  1. Сreate rotation matrix that rotates a figure by np.pi / 3 degrees.
  2. Create a scaling matrix with the parameters scale_x = 2 and scale_y = 0.5.
  3. Apply the rotation_matrix to the square.
  4. Apply the scaling_matrix to the result of the previous transformation.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 5
toggle bottom row

book
Challenge: Figures' Linear Transformations

Tehtävä

Swipe to start coding

Linear transformations of the figures are commonly used in computer graphics. There are 2 main types of linear transformations:

  1. Rotation transformation rotates a figure around a specific point or axis.
  2. Scale transformation resizes a figure by changing its size along each axis.

Your task is to apply all these transformations to a rectangle one by one. As a result, we will have a composition of transformations:

  1. Сreate rotation matrix that rotates a figure by np.pi / 3 degrees.
  2. Create a scaling matrix with the parameters scale_x = 2 and scale_y = 0.5.
  3. Apply the rotation_matrix to the square.
  4. Apply the scaling_matrix to the result of the previous transformation.

Ratkaisu

Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Oliko kaikki selvää?

Miten voimme parantaa sitä?

Kiitos palautteestasi!

Osio 2. Luku 5
Switch to desktopVaihda työpöytään todellista harjoitusta vartenJatka siitä, missä olet käyttämällä jotakin alla olevista vaihtoehdoista
Pahoittelemme, että jotain meni pieleen. Mitä tapahtui?
some-alt