Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Perceptron Layers | Neural Network from Scratch
Introduction to Neural Networks
course content

Contenido del Curso

Introduction to Neural Networks

Introduction to Neural Networks

1. Concept of Neural Network
2. Neural Network from Scratch
3. Conclusion

book
Perceptron Layers

Perceptron is the name of the simplest neural network, consisting of only one hidden layer. However, in order to be able to solve more complex problems, we will create a variation of perceptron called multilayer perceptron (MLP). A multilayer perceptron consists of multiple hidden layers. The structure of a multilayer perceptron looks like this:

  1. An input layer: It receives the input data;
  2. Hidden layers: These layers process the data and extract patterns. We have two hidden layers in our model;
  3. Output layer: Produces the final prediction or classifications.

In general, each layer consists of multiple neurons, and the output from one layer becomes the input for the next layer.

Tarea
test

Swipe to begin your solution

Set up the basic structure of the perceptron by implementing its layers.

  1. Create neurons and specify number of their inputs.
  2. Active neurons for forward propagation.
  3. Define three layers: 2 hidden layers and 1 output layer.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 2
toggle bottom row

book
Perceptron Layers

Perceptron is the name of the simplest neural network, consisting of only one hidden layer. However, in order to be able to solve more complex problems, we will create a variation of perceptron called multilayer perceptron (MLP). A multilayer perceptron consists of multiple hidden layers. The structure of a multilayer perceptron looks like this:

  1. An input layer: It receives the input data;
  2. Hidden layers: These layers process the data and extract patterns. We have two hidden layers in our model;
  3. Output layer: Produces the final prediction or classifications.

In general, each layer consists of multiple neurons, and the output from one layer becomes the input for the next layer.

Tarea
test

Swipe to begin your solution

Set up the basic structure of the perceptron by implementing its layers.

  1. Create neurons and specify number of their inputs.
  2. Active neurons for forward propagation.
  3. Define three layers: 2 hidden layers and 1 output layer.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 2
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
We're sorry to hear that something went wrong. What happened?
some-alt