Contenido del Curso
Introduction to Neural Networks
Introduction to Neural Networks
2. Neural Network from Scratch
Single Neuron ImplementationChallenge: Creating a NeuronPerceptron LayersChallenge: Creating a PerceptronForward PropagationLoss FunctionBackward PropagationBackpropagation ImplementationModel TrainingChallenge: Training the PerceptronModel EvaluationChallenge: Evaluating the PerceptronNeural Network with scikit-learnBackward Propagation
3. Model Training and Evaluation
Challenge: Evaluating the Perceptron
Tarea
Swipe to start coding
Get the predictions of the trained model and evaluate the performance of the model using them:
- Training the model with
100
epochs and learning rate0.5
. - Get predictions of the model for every example in the test set.
- Calculate accuracy of the model.
Solución
¿Todo estuvo claro?
¡Gracias por tus comentarios!
Sección 2. Capítulo 12
Challenge: Evaluating the Perceptron
Tarea
Swipe to start coding
Get the predictions of the trained model and evaluate the performance of the model using them:
- Training the model with
100
epochs and learning rate0.5
. - Get predictions of the model for every example in the test set.
- Calculate accuracy of the model.
Solución
¿Todo estuvo claro?
¡Gracias por tus comentarios!
Sección 2. Capítulo 12