Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Try to Evaluate | Multivariate Linear Regression
Explore the Linear Regression Using Python
course content

Contenido del Curso

Explore the Linear Regression Using Python

Explore the Linear Regression Using Python

1. What is the Linear Regression?
2. Correlation
3. Building and Training Model
4. Metrics to Evaluate the Model
5. Multivariate Linear Regression

bookTry to Evaluate

Let’s see which model is better using the metrics we already know.

MSE:

123
from sklearn.metrics import mean_squared_error print(mean_squared_error(Y_test, y_test_predicted).round(2)) print(mean_squared_error(Y_test, y_test_predicted2).round(2))
copy

MAE:

123
from sklearn.metrics import mean_absolute_error print(mean_absolute_error(Y_test, y_test_predicted).round(2)) print(mean_absolute_error(Y_test, y_test_predicted2).round(2))
copy

R-squared:

123
from sklearn.metrics import r2_score print(r2_score(Y_test, y_test_predicted).round(2)) print(r2_score(Y_test, y_test_predicted2).round(2))
copy

As a general rule, the more features a model includes, the lower the MSE (RMSE) and MAE will be. However, be careful about including too many features. Some of them may be extremely random, degrading the model's interpretability.

Tarea

Let’s evaluate the model from the previous task:

  1. [Line #30] Import mean_squared_error for calculating metrics from scikit.metrics.
  2. [Line #31] Find MSE using method mean_squared_error() and Y_test, y_test_predicted2 as the parameters, assign it to the variable MSE, round the result to second digit.
  3. [Line #32] Print the variable MSE.
  4. [Line #35] Import r2_score from scikit.metrics.
  5. [Line #36] Find R-squared and assign it to the variable r_squared, round the result to second digit.
  6. [Line #37] Print the variable r_squared.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 5. Capítulo 2
toggle bottom row

bookTry to Evaluate

Let’s see which model is better using the metrics we already know.

MSE:

123
from sklearn.metrics import mean_squared_error print(mean_squared_error(Y_test, y_test_predicted).round(2)) print(mean_squared_error(Y_test, y_test_predicted2).round(2))
copy

MAE:

123
from sklearn.metrics import mean_absolute_error print(mean_absolute_error(Y_test, y_test_predicted).round(2)) print(mean_absolute_error(Y_test, y_test_predicted2).round(2))
copy

R-squared:

123
from sklearn.metrics import r2_score print(r2_score(Y_test, y_test_predicted).round(2)) print(r2_score(Y_test, y_test_predicted2).round(2))
copy

As a general rule, the more features a model includes, the lower the MSE (RMSE) and MAE will be. However, be careful about including too many features. Some of them may be extremely random, degrading the model's interpretability.

Tarea

Let’s evaluate the model from the previous task:

  1. [Line #30] Import mean_squared_error for calculating metrics from scikit.metrics.
  2. [Line #31] Find MSE using method mean_squared_error() and Y_test, y_test_predicted2 as the parameters, assign it to the variable MSE, round the result to second digit.
  3. [Line #32] Print the variable MSE.
  4. [Line #35] Import r2_score from scikit.metrics.
  5. [Line #36] Find R-squared and assign it to the variable r_squared, round the result to second digit.
  6. [Line #37] Print the variable r_squared.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 5. Capítulo 2
toggle bottom row

bookTry to Evaluate

Let’s see which model is better using the metrics we already know.

MSE:

123
from sklearn.metrics import mean_squared_error print(mean_squared_error(Y_test, y_test_predicted).round(2)) print(mean_squared_error(Y_test, y_test_predicted2).round(2))
copy

MAE:

123
from sklearn.metrics import mean_absolute_error print(mean_absolute_error(Y_test, y_test_predicted).round(2)) print(mean_absolute_error(Y_test, y_test_predicted2).round(2))
copy

R-squared:

123
from sklearn.metrics import r2_score print(r2_score(Y_test, y_test_predicted).round(2)) print(r2_score(Y_test, y_test_predicted2).round(2))
copy

As a general rule, the more features a model includes, the lower the MSE (RMSE) and MAE will be. However, be careful about including too many features. Some of them may be extremely random, degrading the model's interpretability.

Tarea

Let’s evaluate the model from the previous task:

  1. [Line #30] Import mean_squared_error for calculating metrics from scikit.metrics.
  2. [Line #31] Find MSE using method mean_squared_error() and Y_test, y_test_predicted2 as the parameters, assign it to the variable MSE, round the result to second digit.
  3. [Line #32] Print the variable MSE.
  4. [Line #35] Import r2_score from scikit.metrics.
  5. [Line #36] Find R-squared and assign it to the variable r_squared, round the result to second digit.
  6. [Line #37] Print the variable r_squared.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Let’s see which model is better using the metrics we already know.

MSE:

123
from sklearn.metrics import mean_squared_error print(mean_squared_error(Y_test, y_test_predicted).round(2)) print(mean_squared_error(Y_test, y_test_predicted2).round(2))
copy

MAE:

123
from sklearn.metrics import mean_absolute_error print(mean_absolute_error(Y_test, y_test_predicted).round(2)) print(mean_absolute_error(Y_test, y_test_predicted2).round(2))
copy

R-squared:

123
from sklearn.metrics import r2_score print(r2_score(Y_test, y_test_predicted).round(2)) print(r2_score(Y_test, y_test_predicted2).round(2))
copy

As a general rule, the more features a model includes, the lower the MSE (RMSE) and MAE will be. However, be careful about including too many features. Some of them may be extremely random, degrading the model's interpretability.

Tarea

Let’s evaluate the model from the previous task:

  1. [Line #30] Import mean_squared_error for calculating metrics from scikit.metrics.
  2. [Line #31] Find MSE using method mean_squared_error() and Y_test, y_test_predicted2 as the parameters, assign it to the variable MSE, round the result to second digit.
  3. [Line #32] Print the variable MSE.
  4. [Line #35] Import r2_score from scikit.metrics.
  5. [Line #36] Find R-squared and assign it to the variable r_squared, round the result to second digit.
  6. [Line #37] Print the variable r_squared.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Sección 5. Capítulo 2
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
some-alt