Poor Data Presentation
One of the reasons that can cause types inconsistency may be poor data presentation. For instance, values of weight column may have also the measurment unit (like, 25kg, 14lb). In this case Python will understand these values as strings.
Let's see what is wrong with the values in the columns we considered to have wrong type.
1234567# Importing the library import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/f2947b09-5f0d-4ad9-992f-ec0b87cd4b3f/data.csv') # Output values of 'problematic' columns print(df.loc[:,['totinch', 'morgh', 'valueh', 'grosrth', 'omphtotinch']])
We found the root of the problem. All the columns but 'totinch' use dots . as indicator for missing values, while values in the 'totinch' column use commas , as the decimal separator. This may happen due to data origin, for instance. This problem can be solved by replacing commas with dots, and converting to float type.
Note, if you try to convert existing values into numeric type, then the error
ValueErrorwill be raised.
¡Gracias por tus comentarios!
Pregunte a AI
Pregunte a AI
Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla
Pregunte me preguntas sobre este tema
Resumir este capítulo
Mostrar ejemplos del mundo real
Awesome!
Completion rate improved to 2.56
Poor Data Presentation
Desliza para mostrar el menú
One of the reasons that can cause types inconsistency may be poor data presentation. For instance, values of weight column may have also the measurment unit (like, 25kg, 14lb). In this case Python will understand these values as strings.
Let's see what is wrong with the values in the columns we considered to have wrong type.
1234567# Importing the library import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/f2947b09-5f0d-4ad9-992f-ec0b87cd4b3f/data.csv') # Output values of 'problematic' columns print(df.loc[:,['totinch', 'morgh', 'valueh', 'grosrth', 'omphtotinch']])
We found the root of the problem. All the columns but 'totinch' use dots . as indicator for missing values, while values in the 'totinch' column use commas , as the decimal separator. This may happen due to data origin, for instance. This problem can be solved by replacing commas with dots, and converting to float type.
Note, if you try to convert existing values into numeric type, then the error
ValueErrorwill be raised.
¡Gracias por tus comentarios!