Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Feature Selection Pipeline | Feature Selection Strategies
Feature Selection and Regularization Techniques

bookChallenge: Feature Selection Pipeline

Tarea

Swipe to start coding

You will build a feature selection + regression pipeline to predict disease progression using the Diabetes dataset. Your goal is to combine preprocessing, feature selection, and model training in one efficient workflow.

Follow these steps:

  1. Load the dataset using load_diabetes().
  2. Split it into train/test sets (test_size=0.3, random_state=42).
  3. Build a pipeline with:
    • StandardScaler().
    • SelectFromModel(Lasso(alpha=0.01, random_state=42)) for automatic feature selection.
    • LinearRegression() as the final model.
  4. Fit the pipeline and evaluate it using R² score on the test set.
  5. Print:
    • The R² score (rounded to 3 decimals).
    • The number of features selected.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 4
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Suggested prompts:

Can you explain that in more detail?

What are the main benefits or drawbacks?

Can you provide an example?

close

Awesome!

Completion rate improved to 8.33

bookChallenge: Feature Selection Pipeline

Desliza para mostrar el menú

Tarea

Swipe to start coding

You will build a feature selection + regression pipeline to predict disease progression using the Diabetes dataset. Your goal is to combine preprocessing, feature selection, and model training in one efficient workflow.

Follow these steps:

  1. Load the dataset using load_diabetes().
  2. Split it into train/test sets (test_size=0.3, random_state=42).
  3. Build a pipeline with:
    • StandardScaler().
    • SelectFromModel(Lasso(alpha=0.01, random_state=42)) for automatic feature selection.
    • LinearRegression() as the final model.
  4. Fit the pipeline and evaluate it using R² score on the test set.
  5. Print:
    • The R² score (rounded to 3 decimals).
    • The number of features selected.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 4
single

single

some-alt