Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Fourier Transform | Image Processing with OpenCV
Computer Vision Essentials

Desliza para mostrar el menú

book
Fourier Transform

It allows us to transform an image from the spatial domain (where pixel values are represented directly) to the frequency domain (where we analyze patterns and structures based on their frequency). This is useful for tasks like image filtering, edge detection, and noise reduction.

First, we need to convert the image to grayscale:

To compute the 2D Fourier transform:

Here, fft2() converts the image from the spatial domain to the frequency domain, and fftshift() moves low-frequency components to the center.

To visualize the magnitude spectrum:

Since Fourier transform outputs complex numbers, we take the absolute values (np.abs()) for a meaningful visualization.

The np.log function enhances visibility, as raw magnitude values vary greatly in scale.

Tarea

Swipe to start coding

You are given an image:

  • Convert image to grayscale and store in gray_image variable;
  • Apply Fourier transform to the gray_image and stote in dft variable;
  • Make zero frequency shift to center and store the result in dft_shift variable;
  • Calculate a magnitude spectrum and store in magnitude_spectrum variable.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 2

Pregunte a AI

expand
ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

book
Fourier Transform

It allows us to transform an image from the spatial domain (where pixel values are represented directly) to the frequency domain (where we analyze patterns and structures based on their frequency). This is useful for tasks like image filtering, edge detection, and noise reduction.

First, we need to convert the image to grayscale:

To compute the 2D Fourier transform:

Here, fft2() converts the image from the spatial domain to the frequency domain, and fftshift() moves low-frequency components to the center.

To visualize the magnitude spectrum:

Since Fourier transform outputs complex numbers, we take the absolute values (np.abs()) for a meaningful visualization.

The np.log function enhances visibility, as raw magnitude values vary greatly in scale.

Tarea

Swipe to start coding

You are given an image:

  • Convert image to grayscale and store in gray_image variable;
  • Apply Fourier transform to the gray_image and stote in dft variable;
  • Make zero frequency shift to center and store the result in dft_shift variable;
  • Calculate a magnitude spectrum and store in magnitude_spectrum variable.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 2
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Lamentamos que algo salió mal. ¿Qué pasó?
some-alt