Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Corner and Blob Detection | Image Processing with OpenCV
Computer Vision Course Outline
course content

Contenido del Curso

Computer Vision Course Outline

Computer Vision Course Outline

1. Introduction to Computer Vision
2. Image Processing with OpenCV
3. Convolutional Neural Networks

book
Corner and Blob Detection

Corner Detection

Corner detection is used to identify sharp changes in intensity where two edges meet. It helps in feature matching, object tracking, and structure recognition.

Popular Methods:

  • Harris Corner Detector (cv2.cornerHarris) - Detects corners based on gradient changes.
  • Shi-Tomasi Corner Detector (cv2.goodFeaturesToTrack) - Selects the strongest corners in an image.

Blob Detection

Blob detection finds regions of similar intensity in an image, useful for object detection and tracking.

Popular Method:

  • SimpleBlobDetector (cv2.SimpleBlobDetector) - Detects keypoints representing blobs based on size, shape, and intensity.
Tarea

Swipe to start coding

Your task is to perform corner detection by Harris, Shi-Tomasi methods on a factory image and blob detection by Simple Blob Detector on a sunflower image with the following conditions:

  1. Harris Corner Detection:
    • Block size: 2;
    • Kernel size: 3;
    • Harris detector free parameter (k): 0.04;
    • Mark detected corners in blue [0, 0, 255].
  2. Shi-Tomasi Corner Detection:
    • Maximum corners quantity: 100;
    • Quality level: 0.01;
    • Minimum distance between corners: 10;
    • Mark detected corners in green [255, 255, 0].
  3. Blob Detection (SimpleBlobDetector):
    • Maximal threshold: 127;
    • Filter by area:
      • Minimal area: 100;
      • Maximal area: 500;
    • Filter by circularity:
      • Minimal circularity: 0.02 (detects irregular shapes);
    • Filter by convexity:
      • Minimal convexity: 0.5 (allows concave blobs);
    • Filter by inertia:
      • Minimal inertia ratio: 0.001 (detects elongated blobs);
    • Mark detected blobs in green [255, 0, 255] using cv2.drawKeypoints() with cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS flag.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 8
toggle bottom row

book
Corner and Blob Detection

Corner Detection

Corner detection is used to identify sharp changes in intensity where two edges meet. It helps in feature matching, object tracking, and structure recognition.

Popular Methods:

  • Harris Corner Detector (cv2.cornerHarris) - Detects corners based on gradient changes.
  • Shi-Tomasi Corner Detector (cv2.goodFeaturesToTrack) - Selects the strongest corners in an image.

Blob Detection

Blob detection finds regions of similar intensity in an image, useful for object detection and tracking.

Popular Method:

  • SimpleBlobDetector (cv2.SimpleBlobDetector) - Detects keypoints representing blobs based on size, shape, and intensity.
Tarea

Swipe to start coding

Your task is to perform corner detection by Harris, Shi-Tomasi methods on a factory image and blob detection by Simple Blob Detector on a sunflower image with the following conditions:

  1. Harris Corner Detection:
    • Block size: 2;
    • Kernel size: 3;
    • Harris detector free parameter (k): 0.04;
    • Mark detected corners in blue [0, 0, 255].
  2. Shi-Tomasi Corner Detection:
    • Maximum corners quantity: 100;
    • Quality level: 0.01;
    • Minimum distance between corners: 10;
    • Mark detected corners in green [255, 255, 0].
  3. Blob Detection (SimpleBlobDetector):
    • Maximal threshold: 127;
    • Filter by area:
      • Minimal area: 100;
      • Maximal area: 500;
    • Filter by circularity:
      • Minimal circularity: 0.02 (detects irregular shapes);
    • Filter by convexity:
      • Minimal convexity: 0.5 (allows concave blobs);
    • Filter by inertia:
      • Minimal inertia ratio: 0.001 (detects elongated blobs);
    • Mark detected blobs in green [255, 0, 255] using cv2.drawKeypoints() with cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS flag.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 8
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
We're sorry to hear that something went wrong. What happened?
some-alt