Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Histogram Equalization | Image Processing with OpenCV
Computer Vision Essentials

Desliza para mostrar el menú

book
Histogram Equalization

Simple Histogram Equalization

Histogram equalization is a technique used to enhance the global contrast of an image. It works by redistributing the intensity values so that they span the entire possible range (0 to 255 in 8-bit images). This is especially useful for images that are too dark or too bright, as it makes features more visible by equalizing the histogram of pixel intensities.

  • cv2.equalizeHist(image)

    • image: input grayscale image (must be single-channel);

    • Returns a new image with enhanced contrast by stretching and flattening the histogram.

Adaptive Histogram Equalization (CLAHE)

CLAHE (Contrast Limited Adaptive Histogram Equalization) is an advanced version of histogram equalization that operates on small regions (tiles) of the image rather than the whole image. It enhances local contrast and avoids over-amplifying noise by limiting the histogram contrast within each tile.

  • cv2.createCLAHE(...) creates a CLAHE object with:

    • clipLimit: threshold for contrast limiting (higher value = more contrast);

    • tileGridSize: size of the grid for dividing the image into tiles (e.g., 8x8).

  • clahe.apply(image) applies CLAHE to the input image.

Tarea

Swipe to start coding

You are given an image variable:

  • Apply simple histogram equalization and store in equalized;
  • Define CLAHE class object in clahe variable;
  • Apply CLAHE histogram equalization and store in clahe_equalized (parameters recomendation: clipLimit=2.0 and tileGridSize=(8, 8)).

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 5

Pregunte a AI

expand
ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

book
Histogram Equalization

Simple Histogram Equalization

Histogram equalization is a technique used to enhance the global contrast of an image. It works by redistributing the intensity values so that they span the entire possible range (0 to 255 in 8-bit images). This is especially useful for images that are too dark or too bright, as it makes features more visible by equalizing the histogram of pixel intensities.

  • cv2.equalizeHist(image)

    • image: input grayscale image (must be single-channel);

    • Returns a new image with enhanced contrast by stretching and flattening the histogram.

Adaptive Histogram Equalization (CLAHE)

CLAHE (Contrast Limited Adaptive Histogram Equalization) is an advanced version of histogram equalization that operates on small regions (tiles) of the image rather than the whole image. It enhances local contrast and avoids over-amplifying noise by limiting the histogram contrast within each tile.

  • cv2.createCLAHE(...) creates a CLAHE object with:

    • clipLimit: threshold for contrast limiting (higher value = more contrast);

    • tileGridSize: size of the grid for dividing the image into tiles (e.g., 8x8).

  • clahe.apply(image) applies CLAHE to the input image.

Tarea

Swipe to start coding

You are given an image variable:

  • Apply simple histogram equalization and store in equalized;
  • Define CLAHE class object in clahe variable;
  • Apply CLAHE histogram equalization and store in clahe_equalized (parameters recomendation: clipLimit=2.0 and tileGridSize=(8, 8)).

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 5
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Lamentamos que algo salió mal. ¿Qué pasó?
some-alt