Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Average Metrics Across Taxi Types | Working with Dates and Times in pandas
Dealing with Dates and Times in Python
course content

Contenido del Curso

Dealing with Dates and Times in Python

Dealing with Dates and Times in Python

1. Working with Dates
2. Working with Times
3. Timezones and Daylight Savings Time (DST)
4. Working with Dates and Times in pandas

bookChallenge: Average Metrics Across Taxi Types

Great! As for now, we have our dataset cleared from abnormally long rides and rides with ending time preceded starting. As we investigated, it happened because of misusage of 12 and 24-hour formats.

Let's try to find out some interesting insights from this dataset.

Tarea

  1. Apply .total_seconds() function to duration column using map and lambda functions.
  2. Group observations by taxi type (vendor_id column). Then, choose columns dist_meters, duration, and calculate mean. Then apply function avg_m to dist_meters and avg_dur to duration. The functions are defined in the code.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 4. Capítulo 8
toggle bottom row

bookChallenge: Average Metrics Across Taxi Types

Great! As for now, we have our dataset cleared from abnormally long rides and rides with ending time preceded starting. As we investigated, it happened because of misusage of 12 and 24-hour formats.

Let's try to find out some interesting insights from this dataset.

Tarea

  1. Apply .total_seconds() function to duration column using map and lambda functions.
  2. Group observations by taxi type (vendor_id column). Then, choose columns dist_meters, duration, and calculate mean. Then apply function avg_m to dist_meters and avg_dur to duration. The functions are defined in the code.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 4. Capítulo 8
toggle bottom row

bookChallenge: Average Metrics Across Taxi Types

Great! As for now, we have our dataset cleared from abnormally long rides and rides with ending time preceded starting. As we investigated, it happened because of misusage of 12 and 24-hour formats.

Let's try to find out some interesting insights from this dataset.

Tarea

  1. Apply .total_seconds() function to duration column using map and lambda functions.
  2. Group observations by taxi type (vendor_id column). Then, choose columns dist_meters, duration, and calculate mean. Then apply function avg_m to dist_meters and avg_dur to duration. The functions are defined in the code.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Great! As for now, we have our dataset cleared from abnormally long rides and rides with ending time preceded starting. As we investigated, it happened because of misusage of 12 and 24-hour formats.

Let's try to find out some interesting insights from this dataset.

Tarea

  1. Apply .total_seconds() function to duration column using map and lambda functions.
  2. Group observations by taxi type (vendor_id column). Then, choose columns dist_meters, duration, and calculate mean. Then apply function avg_m to dist_meters and avg_dur to duration. The functions are defined in the code.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Sección 4. Capítulo 8
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
some-alt