Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Solving Task Using Gaussian Distribution | Commonly Used Continuous Distributions
Probability Theory Basics
course content

Contenido del Curso

Probability Theory Basics

Probability Theory Basics

1. Basic Concepts of Probability Theory
2. Probability of Complex Events
3. Commonly Used Discrete Distributions
4. Commonly Used Continuous Distributions
5. Covariance and Correlation

bookChallenge: Solving Task Using Gaussian Distribution

Tarea
test

Swipe to show code editor

Suppose you are going fishing.
One type of fish is well caught at atmospheric pressure from 740 to 760 mm Hg.
Fish of the second species is well caught at a pressure of 750 to 770 mm Hg.

Calculate the probability that the fishing will be successful if the atmospheric pressure is Gaussian distributed with a mean of 760 mm and a mean deviation of 15 mm.

You have to:

  1. Calculate the probability that pressure is in the [740, 760] range.
  2. Calculate the probability that pressure is in the [750, 770] range.
  3. As our events intersect, we must use the inclusive-exclusive principle. Calculate the probability that pressure falls into the intersection of corresponding intervals.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 4. Capítulo 5
toggle bottom row

bookChallenge: Solving Task Using Gaussian Distribution

Tarea
test

Swipe to show code editor

Suppose you are going fishing.
One type of fish is well caught at atmospheric pressure from 740 to 760 mm Hg.
Fish of the second species is well caught at a pressure of 750 to 770 mm Hg.

Calculate the probability that the fishing will be successful if the atmospheric pressure is Gaussian distributed with a mean of 760 mm and a mean deviation of 15 mm.

You have to:

  1. Calculate the probability that pressure is in the [740, 760] range.
  2. Calculate the probability that pressure is in the [750, 770] range.
  3. As our events intersect, we must use the inclusive-exclusive principle. Calculate the probability that pressure falls into the intersection of corresponding intervals.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 4. Capítulo 5
toggle bottom row

bookChallenge: Solving Task Using Gaussian Distribution

Tarea
test

Swipe to show code editor

Suppose you are going fishing.
One type of fish is well caught at atmospheric pressure from 740 to 760 mm Hg.
Fish of the second species is well caught at a pressure of 750 to 770 mm Hg.

Calculate the probability that the fishing will be successful if the atmospheric pressure is Gaussian distributed with a mean of 760 mm and a mean deviation of 15 mm.

You have to:

  1. Calculate the probability that pressure is in the [740, 760] range.
  2. Calculate the probability that pressure is in the [750, 770] range.
  3. As our events intersect, we must use the inclusive-exclusive principle. Calculate the probability that pressure falls into the intersection of corresponding intervals.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Tarea
test

Swipe to show code editor

Suppose you are going fishing.
One type of fish is well caught at atmospheric pressure from 740 to 760 mm Hg.
Fish of the second species is well caught at a pressure of 750 to 770 mm Hg.

Calculate the probability that the fishing will be successful if the atmospheric pressure is Gaussian distributed with a mean of 760 mm and a mean deviation of 15 mm.

You have to:

  1. Calculate the probability that pressure is in the [740, 760] range.
  2. Calculate the probability that pressure is in the [750, 770] range.
  3. As our events intersect, we must use the inclusive-exclusive principle. Calculate the probability that pressure falls into the intersection of corresponding intervals.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Sección 4. Capítulo 5
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
We're sorry to hear that something went wrong. What happened?
some-alt