Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Understanding Numerical Data Types in Python | Familiarizándonos con los Números en Python
Tipos de Datos en Python
course content

Contenido del Curso

Tipos de Datos en Python

Tipos de Datos en Python

1. Familiarizándonos con los Números en Python
2. ¿Verdadero o Falso?
3. Strings
4. Reuniendo Todos los Temas

book
Understanding Numerical Data Types in Python

Before diving into Python programming, it's crucial to understand numeric data types, as they are fundamental to many operations.

Python provides two primary numeric data types: integers (int) and floating-point numbers (float). These types are built-in, meaning Python can handle them directly without any additional setup. An integer is a numeric data type representing whole numbers without any decimal points, such as 1, 2, or 456566. A float is a numeric data type representing decimal numbers, like pi (3.14159265359) or Euler's number (2.71828).

Integer represents whole numbers you commonly encounter in your daily life, such as 1, 2, 45, or 456566.

On the other hand, floating numbers include values like pi (3.14159265359) and Euler's number (2.71828).

Select all correct statements about numeric data types in Python:

Select all correct statements about numeric data types in Python:

Selecciona unas respuestas correctas

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 1. Capítulo 1
We're sorry to hear that something went wrong. What happened?
some-alt