Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Choosing the Best K Value | k-NN Classifier
Classification with Python
course content

Contenido del Curso

Classification with Python

Classification with Python

1. k-NN Classifier
2. Logistic Regression
3. Decision Tree
4. Random Forest
5. Comparing Models

book
Challenge: Choosing the Best K Value

As demonstrated in the previous chapters, the model makes different predictions based on the k (number of neighbors) values. When building a model, it's crucial to select the k value that yields the best performance.

You can use cross-validation to measure the model's performance. Running a loop and calculating cross-validation scores for a range of k values to select the highest is a straightforward approach. This is the most commonly used method. sklearn provides a convenient GridSearchCV class for this task:

The param_grid parameter takes a dictionary with parameter names as keys and a list of items to go through as a list. For example, to try values 1-99 for n_neighbors, you would use:

python

The .fit(X, y) method leads the GridSearchCV object to find the best parameters from param_grid and re-train the model with the best parameters using the whole set.
You can then get the highest score using the .best_score_ attribute and predict new values using the .predict() method.

Tarea

Swipe to start coding

You are given the Star Wars ratings dataset stored as a DataFrame in the df variable.

  • Initialize param_grid as a dictionary containing the n_neighbors parameter with the values [3, 9, 18, 27].
  • Create a GridSearchCV object using param_grid with 4-fold cross-validation, train it, and store it in the grid_search variable.
  • Retrieve the best model from grid_search and store it in the best_model variable.
  • Retrieve the score of the best model and store it in the best_score variable.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 1. Capítulo 7
toggle bottom row

book
Challenge: Choosing the Best K Value

As demonstrated in the previous chapters, the model makes different predictions based on the k (number of neighbors) values. When building a model, it's crucial to select the k value that yields the best performance.

You can use cross-validation to measure the model's performance. Running a loop and calculating cross-validation scores for a range of k values to select the highest is a straightforward approach. This is the most commonly used method. sklearn provides a convenient GridSearchCV class for this task:

The param_grid parameter takes a dictionary with parameter names as keys and a list of items to go through as a list. For example, to try values 1-99 for n_neighbors, you would use:

python

The .fit(X, y) method leads the GridSearchCV object to find the best parameters from param_grid and re-train the model with the best parameters using the whole set.
You can then get the highest score using the .best_score_ attribute and predict new values using the .predict() method.

Tarea

Swipe to start coding

You are given the Star Wars ratings dataset stored as a DataFrame in the df variable.

  • Initialize param_grid as a dictionary containing the n_neighbors parameter with the values [3, 9, 18, 27].
  • Create a GridSearchCV object using param_grid with 4-fold cross-validation, train it, and store it in the grid_search variable.
  • Retrieve the best model from grid_search and store it in the best_model variable.
  • Retrieve the score of the best model and store it in the best_score variable.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 1. Capítulo 7
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Lamentamos que algo salió mal. ¿Qué pasó?
some-alt