Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Implementing a Decision Tree | Decision Tree
Classification with Python
course content

Contenido del Curso

Classification with Python

Classification with Python

1. k-NN Classifier
2. Logistic Regression
3. Decision Tree
4. Random Forest
5. Comparing Models

book
Challenge: Implementing a Decision Tree

In this challenge, you will use the Titanic dataset, which contains information about passengers on the Titanic, including their age, sex, family size, and more. The goal is to predict whether a passenger survived or not.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b71ff7ac-3932-41d2-a4d8-060e24b00129/titanic.csv') print(df.head())
copy

To implement the Decision Tree, you can use the DecisionTreeClassifier from sklearn:

Your task is to build a Decision Tree and find the best max_depth and min_samples_leaf using grid search.

Tarea

Swipe to start coding

You are given a Titanic dataset stored as a DataFrame in the df variable.

  • Initialize a Decision Tree model and store it in the decision_tree variable.
  • Create a dictionary for GridSearchCV to iterate through [1, 2, 3, 4, 5, 6, 7] values for max_depth and [1, 2, 4, 6] values for min_samples_leaf, and store it in the param_grid variable.
  • Initialize and train a GridSearchCV object, set the number of folds to 10, and store the trained model in the grid_cv variable.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 4
toggle bottom row

book
Challenge: Implementing a Decision Tree

In this challenge, you will use the Titanic dataset, which contains information about passengers on the Titanic, including their age, sex, family size, and more. The goal is to predict whether a passenger survived or not.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b71ff7ac-3932-41d2-a4d8-060e24b00129/titanic.csv') print(df.head())
copy

To implement the Decision Tree, you can use the DecisionTreeClassifier from sklearn:

Your task is to build a Decision Tree and find the best max_depth and min_samples_leaf using grid search.

Tarea

Swipe to start coding

You are given a Titanic dataset stored as a DataFrame in the df variable.

  • Initialize a Decision Tree model and store it in the decision_tree variable.
  • Create a dictionary for GridSearchCV to iterate through [1, 2, 3, 4, 5, 6, 7] values for max_depth and [1, 2, 4, 6] values for min_samples_leaf, and store it in the param_grid variable.
  • Initialize and train a GridSearchCV object, set the number of folds to 10, and store the trained model in the grid_cv variable.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 4
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Lamentamos que algo salió mal. ¿Qué pasó?
some-alt