Creating Histograms
Why Use Histograms?
Histograms are used to visualize the distribution of continuous (numerical) data. They show how data is spread across ranges (bins) and help us:
-
Detect skewness, outliers, or gaps;
-
Understand frequency distribution;
-
Quickly assess if the data is normally distributed or not.
They are best used for variables like price, mileage, or age.
Basic Histogram Syntax in ggplot2
ggplot(data = df, aes(x = variable)) +
geom_histogram()
The x variable must be numeric.
Customize using bins
, fill
, color
, theme
, etc.
Example: Distribution of Selling Prices
ggplot(data = df, aes(x = selling_price)) +
geom_histogram(fill = "steelblue", color = "black") +
labs(title = "Distribution of Selling Prices",
x = "Selling Price (in PKR)",
y = "Count") +
theme_minimal()
This plot shows how car prices are distributed. It can highlight if most cars fall in a certain price range.
¡Gracias por tus comentarios!
Pregunte a AI
Pregunte a AI
Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla
Can you explain the difference between a histogram and a bar plot?
How do I choose the right number of bins for my histogram?
What does it mean if my histogram is skewed to the right or left?
Awesome!
Completion rate improved to 4
Creating Histograms
Desliza para mostrar el menú
Why Use Histograms?
Histograms are used to visualize the distribution of continuous (numerical) data. They show how data is spread across ranges (bins) and help us:
-
Detect skewness, outliers, or gaps;
-
Understand frequency distribution;
-
Quickly assess if the data is normally distributed or not.
They are best used for variables like price, mileage, or age.
Basic Histogram Syntax in ggplot2
ggplot(data = df, aes(x = variable)) +
geom_histogram()
The x variable must be numeric.
Customize using bins
, fill
, color
, theme
, etc.
Example: Distribution of Selling Prices
ggplot(data = df, aes(x = selling_price)) +
geom_histogram(fill = "steelblue", color = "black") +
labs(title = "Distribution of Selling Prices",
x = "Selling Price (in PKR)",
y = "Count") +
theme_minimal()
This plot shows how car prices are distributed. It can highlight if most cars fall in a certain price range.
¡Gracias por tus comentarios!