Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Clean Messy Reviews | Advanced Text Cleaning
Quizzes & Challenges
Quizzes
Challenges
/
Data Cleaning Techniques in Python

bookChallenge: Clean Messy Reviews

Tarea

Swipe to start coding

You are given a list of customer review texts in the variable reviews. The reviews may contain emojis, hashtags, repeated characters, noise words, punctuation, and informal expressions.

Your goal is to create a normalized version of each review using several NLP cleaning steps.

Follow these steps:

  1. Convert each review to lowercase.
  2. Remove emojis, hashtags, and mentions using a regular expression.
  3. Normalize repeated characters: any character repeated 3 or more times should be reduced to a single instance (cooooolcool).
  4. Tokenize each review using nltk.word_tokenize().
  5. Remove stopwords using the provided stopwords list.
  6. Apply stemming to the remaining tokens using PorterStemmer.
  7. Store each cleaned review (joined back with spaces) in a list named cleaned_reviews.

Make sure the variable cleaned_reviews is declared and contains all normalized reviews in the correct order.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 4. Capítulo 3
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

close

bookChallenge: Clean Messy Reviews

Desliza para mostrar el menú

Tarea

Swipe to start coding

You are given a list of customer review texts in the variable reviews. The reviews may contain emojis, hashtags, repeated characters, noise words, punctuation, and informal expressions.

Your goal is to create a normalized version of each review using several NLP cleaning steps.

Follow these steps:

  1. Convert each review to lowercase.
  2. Remove emojis, hashtags, and mentions using a regular expression.
  3. Normalize repeated characters: any character repeated 3 or more times should be reduced to a single instance (cooooolcool).
  4. Tokenize each review using nltk.word_tokenize().
  5. Remove stopwords using the provided stopwords list.
  6. Apply stemming to the remaining tokens using PorterStemmer.
  7. Store each cleaned review (joined back with spaces) in a list named cleaned_reviews.

Make sure the variable cleaned_reviews is declared and contains all normalized reviews in the correct order.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 4. Capítulo 3
single

single

some-alt