Contenido del Curso
Learning Statistics with Python
Learning Statistics with Python
2. Mean, Median and Mode with Python
4. Covariance vs Correlation
Advanced Confidence Interval Calculation with Python
If we are working with a small distribution (size less than or equal to 30) that approximates the normal distribution, we will use t-statistics.
How to calculate the confidence interval?
- We use the
t.interval()
function fromscipy.stats
for the Student's T distribution. - As mentioned earlier,
alpha
represents the confidence level. df
stands for the number of degrees of freedom.loc
represents the mean.sem
represents the standard error of the sample.
Degrees of Freedom
Degrees of freedom are the number of independent information elements used to estimate a parameter.
The formula for degrees of freedom is N - 1
, where N
is the sample size.
Feel free to adjust the alpha
parameter and observe the resulting changes.
import scipy.stats as st import numpy as np data = [104, 106, 106, 107, 107, 107, 108, 108, 108, 108, 108, 109, 109, 109, 110, 110, 111, 111, 112] # Calculate the confidence interval confidence = st.t.interval(alpha = 0.95, df = len(data)-1, loc = np.mean(data), scale = st.sem(data)) print(confidence)
¿Todo estuvo claro?
¡Gracias por tus comentarios!
Sección 5. Capítulo 6