Contenido del Curso
ML Introduction with scikit-learn
ML Introduction with scikit-learn
OrdinalEncoder
The next problem we will solve is categorical data. Recall that there are two types of categorical data.
Ordinal data follows some natural order, while nominal does not. Since there is a natural order, we can encode categories to the numbers in that order.
For example, we would encode the 'rate'
column containing 'Terrible', 'Bad', 'OK', 'Good', and 'Great' values as follows:
- 'Terrible' – 0;
- 'Bad' – 1;
- 'OK' – 2;
- 'Good' – 3;
- 'Great' – 4.
To encode ordinal data, OrdinalEncoder
is used. It just encodes the categories to 0, 1, 2, ... .
OrdinalEncoder
is easy to use like any other transformer. The only difficulty is to specify the categories
argument correctly.
Let's look at an example of use. We have a dataset (not the penguins dataset) with an 'education'
column. Now, let's examine its unique values.
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a65bbc96-309e-4df9-a790-a1eb8c815a1c/adult_edu.csv') print(df['education'].unique())
We need to create a list of ordered categorical values, in this case, from 'HS-grad' to 'Doctorate'.
import pandas as pd from sklearn.preprocessing import OrdinalEncoder # Load the data and assign X, y variables df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a65bbc96-309e-4df9-a790-a1eb8c815a1c/adult_edu.csv') y = df['income'] # 'income' is a target in this dataset X = df.drop('income', axis=1) # Create a list of categories so HS-grad is encoded as 0 and Doctorate as 6 edu_categories = ['HS-grad', 'Some-college', 'Assoc', 'Bachelors', 'Masters', 'Prof-school', 'Doctorate'] # Initialize an OrdinalEncoder instance with the correct categories ord_enc = OrdinalEncoder(categories=[edu_categories]) # Transform the 'education' column and print it X['education'] = ord_enc.fit_transform(X[['education']]) print(X['education'])
If you need to transform multiple features using the OrdinalEncoder
, it's important to specify the categories for each column. You can do this using the categories
argument as shown below:
¡Gracias por tus comentarios!