Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Random Forest | Bagging and Random Forests
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Ensemble Learning Techniques with Python

bookChallenge: Random Forest

Tarea

Swipe to start coding

Train and evaluate a Random Forest Classifier on the Iris dataset. Your task is to:

  1. Load the dataset using sklearn.datasets.load_iris().
  2. Split the data into training and testing sets (test_size=0.3, random_state=42).
  3. Train a RandomForestClassifier with:
    • n_estimators=100,
    • max_depth=4,
    • random_state=42.
  4. Predict labels on the test set.
  5. Compute and print the accuracy score of your model.
  6. Store the trained model in a variable named rf_model and predictions in y_pred.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 4
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Suggested prompts:

Can you explain this in simpler terms?

What are the main points I should remember?

Can you give me an example?

close

bookChallenge: Random Forest

Desliza para mostrar el menú

Tarea

Swipe to start coding

Train and evaluate a Random Forest Classifier on the Iris dataset. Your task is to:

  1. Load the dataset using sklearn.datasets.load_iris().
  2. Split the data into training and testing sets (test_size=0.3, random_state=42).
  3. Train a RandomForestClassifier with:
    • n_estimators=100,
    • max_depth=4,
    • random_state=42.
  4. Predict labels on the test set.
  5. Compute and print the accuracy score of your model.
  6. Store the trained model in a variable named rf_model and predictions in y_pred.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 4
single

single

some-alt