Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Boosting | Boosting Algorithms
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Ensemble Learning Techniques with Python

bookChallenge: Boosting

Tarea

Swipe to start coding

Your task is to train and evaluate two boosting models — AdaBoost and Gradient Boosting — on the Breast Cancer dataset.

Follow these steps:

  1. Load the dataset using load_breast_cancer() from sklearn.datasets.
  2. Split the data into training and testing sets (test_size=0.3, random_state=42).
  3. Train:
    • An AdaBoostClassifier with:
      • base_estimator=DecisionTreeClassifier(max_depth=1)
      • n_estimators=50, learning_rate=0.8
    • A GradientBoostingClassifier with:
      • n_estimators=100, learning_rate=0.1, max_depth=3.
  4. Evaluate both models on the test data using accuracy_score.
  5. Print both accuracies.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 4
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Suggested prompts:

Can you explain this in simpler terms?

What are the main points I should remember?

Can you give me an example?

close

bookChallenge: Boosting

Desliza para mostrar el menú

Tarea

Swipe to start coding

Your task is to train and evaluate two boosting models — AdaBoost and Gradient Boosting — on the Breast Cancer dataset.

Follow these steps:

  1. Load the dataset using load_breast_cancer() from sklearn.datasets.
  2. Split the data into training and testing sets (test_size=0.3, random_state=42).
  3. Train:
    • An AdaBoostClassifier with:
      • base_estimator=DecisionTreeClassifier(max_depth=1)
      • n_estimators=50, learning_rate=0.8
    • A GradientBoostingClassifier with:
      • n_estimators=100, learning_rate=0.1, max_depth=3.
  4. Evaluate both models on the test data using accuracy_score.
  5. Print both accuracies.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 4
single

single

some-alt