Challenge: Boosting
Tarea
Swipe to start coding
Your task is to train and evaluate two boosting models — AdaBoost and Gradient Boosting — on the Breast Cancer dataset.
Follow these steps:
- Load the dataset using
load_breast_cancer()fromsklearn.datasets. - Split the data into training and testing sets (
test_size=0.3,random_state=42). - Train:
- An AdaBoostClassifier with:
base_estimator=DecisionTreeClassifier(max_depth=1)n_estimators=50,learning_rate=0.8
- A GradientBoostingClassifier with:
n_estimators=100,learning_rate=0.1,max_depth=3.
- An AdaBoostClassifier with:
- Evaluate both models on the test data using
accuracy_score. - Print both accuracies.
Solución
¿Todo estuvo claro?
¡Gracias por tus comentarios!
Sección 3. Capítulo 4
single
Pregunte a AI
Pregunte a AI
Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla
Suggested prompts:
Can you explain this in simpler terms?
What are the main points I should remember?
Can you give me an example?
Genial!
Completion tasa mejorada a 7.14
Challenge: Boosting
Desliza para mostrar el menú
Tarea
Swipe to start coding
Your task is to train and evaluate two boosting models — AdaBoost and Gradient Boosting — on the Breast Cancer dataset.
Follow these steps:
- Load the dataset using
load_breast_cancer()fromsklearn.datasets. - Split the data into training and testing sets (
test_size=0.3,random_state=42). - Train:
- An AdaBoostClassifier with:
base_estimator=DecisionTreeClassifier(max_depth=1)n_estimators=50,learning_rate=0.8
- A GradientBoostingClassifier with:
n_estimators=100,learning_rate=0.1,max_depth=3.
- An AdaBoostClassifier with:
- Evaluate both models on the test data using
accuracy_score. - Print both accuracies.
Solución
¿Todo estuvo claro?
¡Gracias por tus comentarios!
Sección 3. Capítulo 4
single