Contenido del Curso
Análisis de Series Temporales
Análisis de Series Temporales
Implementación en Python
Una vez familiarizados con los modelos que nos permitirán predecir series temporales, probablemente te surja una duda, ¿qué librerías de Python se utilizarán?
En primer lugar, con el fin de comprender mejor el mecanismo matemático - usted mismo puede implementar uno de los modelos en Python.
Mientras que el resto de los modelos los cargaremos a través de librerías como statsmodels
:
``python import matplotlib.pyplot como plt import pandas como pd import seaborn como sns from statsmodels.tsa.api import acf, graphics, pacf from statsmodels.tsa.ar_model import AutoReg, ar_select_order
sns.set_style("darkgrid") pd.plotting.register_matplotlib_converters() sns.mpl.rc("figure", figsize=(16, 6)) sns.mpl.rc("fuente", tamaño=14)
datos = pd.read_csv("HOUSTNSA.csv") datos = datos.set_index("FECHA") vivienda = data.pct_change().dropna() housing = 100 * housing.asfreq("MS") fig, ax = plt.subplots() ax = vivienda.plot(ax=ax) ```
En el gráfico anterior hemos formado una predicción para los próximos cien meses.
El código anterior utiliza un modelo que capta el último "patrón" de estacionalidad, es decir, el mismo segmento que se repite.
¡Gracias por tus comentarios!