Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Solving Task Using AdaBoost Classifier | Commonly Used Boosting Models
Ensemble Learning
course content

Contenido del Curso

Ensemble Learning

Ensemble Learning

1. Basic Principles of Building Ensemble Models
2. Commonly Used Bagging Models
3. Commonly Used Boosting Models
4. Commonly Used Stacking Models

book
Challenge: Solving Task Using AdaBoost Classifier

Tarea
test

Swipe to show code editor

The load_wine dataset is a classic example used for classification tasks. It consists of 178 samples, each representing a different wine cultivar. The dataset comprises 13 numerical attributes that describe various chemical characteristics of the wines, including features like alcohol content, malic acid concentration, and ash content. The target variable consists of three distinct classes representing the three different cultivars.

Your task is to use AdaBoost Classifier to solve the classification problem on the load_wine dataset:

  1. Split data into train and test sets.
  2. Use the AdaBoostClassifier() constructor to create the model with 50 base estimators.

Note

If we don't specify the base model of AdaBoostClassifer, the Decision Tree Classifier will be used by default.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 2
toggle bottom row

book
Challenge: Solving Task Using AdaBoost Classifier

Tarea
test

Swipe to show code editor

The load_wine dataset is a classic example used for classification tasks. It consists of 178 samples, each representing a different wine cultivar. The dataset comprises 13 numerical attributes that describe various chemical characteristics of the wines, including features like alcohol content, malic acid concentration, and ash content. The target variable consists of three distinct classes representing the three different cultivars.

Your task is to use AdaBoost Classifier to solve the classification problem on the load_wine dataset:

  1. Split data into train and test sets.
  2. Use the AdaBoostClassifier() constructor to create the model with 50 base estimators.

Note

If we don't specify the base model of AdaBoostClassifer, the Decision Tree Classifier will be used by default.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 2
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
We're sorry to hear that something went wrong. What happened?
some-alt