Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Solving Task Using Bagging Regressor | Commonly Used Bagging Models
Ensemble Learning
course content

Contenido del Curso

Ensemble Learning

Ensemble Learning

1. Basic Principles of Building Ensemble Models
2. Commonly Used Bagging Models
3. Commonly Used Boosting Models
4. Commonly Used Stacking Models

bookChallenge: Solving Task Using Bagging Regressor

Tarea

The load_diabetes dataset contains ten baseline variables (age, sex, BMI, average blood pressure, and six blood serum measurements) for 442 diabetes patients. The target variable is a quantitative measure of disease progression one year after baseline. This dataset is used for predicting the continuous variable, representing diabetes progression, based on the given features.

Your task is to use Bagging Regressor to solve the regression problem on load_diabetes dataset:

  1. Use a simple LinearRegression model as the base model of the ensemble.
  2. Use the BaggingRegressor class to create an ensemble.
  3. Use Mean Squared Error(MSE) to evaluate the results.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 4
toggle bottom row

bookChallenge: Solving Task Using Bagging Regressor

Tarea

The load_diabetes dataset contains ten baseline variables (age, sex, BMI, average blood pressure, and six blood serum measurements) for 442 diabetes patients. The target variable is a quantitative measure of disease progression one year after baseline. This dataset is used for predicting the continuous variable, representing diabetes progression, based on the given features.

Your task is to use Bagging Regressor to solve the regression problem on load_diabetes dataset:

  1. Use a simple LinearRegression model as the base model of the ensemble.
  2. Use the BaggingRegressor class to create an ensemble.
  3. Use Mean Squared Error(MSE) to evaluate the results.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 4
toggle bottom row

bookChallenge: Solving Task Using Bagging Regressor

Tarea

The load_diabetes dataset contains ten baseline variables (age, sex, BMI, average blood pressure, and six blood serum measurements) for 442 diabetes patients. The target variable is a quantitative measure of disease progression one year after baseline. This dataset is used for predicting the continuous variable, representing diabetes progression, based on the given features.

Your task is to use Bagging Regressor to solve the regression problem on load_diabetes dataset:

  1. Use a simple LinearRegression model as the base model of the ensemble.
  2. Use the BaggingRegressor class to create an ensemble.
  3. Use Mean Squared Error(MSE) to evaluate the results.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Tarea

The load_diabetes dataset contains ten baseline variables (age, sex, BMI, average blood pressure, and six blood serum measurements) for 442 diabetes patients. The target variable is a quantitative measure of disease progression one year after baseline. This dataset is used for predicting the continuous variable, representing diabetes progression, based on the given features.

Your task is to use Bagging Regressor to solve the regression problem on load_diabetes dataset:

  1. Use a simple LinearRegression model as the base model of the ensemble.
  2. Use the BaggingRegressor class to create an ensemble.
  3. Use Mean Squared Error(MSE) to evaluate the results.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Sección 2. Capítulo 4
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
some-alt