Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Ethical and Social Implications | Explainability in Practice and Ethics
Explainable AI (XAI) Basics

bookEthical and Social Implications

When you use artificial intelligence in real-world applications, you must consider the ethical principles that guide responsible AI development and deployment. Four key principles—transparency, fairness, accountability, and user empowerment—are central to explainable AI (XAI). Transparency means making the inner workings and decisions of AI systems understandable to users and stakeholders. This allows people to see why a system made a particular recommendation or prediction. Fairness is about ensuring that AI systems do not produce biased or discriminatory outcomes. By making models explainable, you can more easily detect and correct unfair patterns in data or decisions. Accountability means that developers, organizations, and users can be held responsible for the actions and outcomes of AI systems. If an AI decision leads to harm or error, explainability helps trace back what happened and why. Finally, user empowerment refers to giving users the information and tools they need to understand, question, and challenge AI decisions. When users know how and why an AI system works, they can make better-informed choices and trust the technology more.

Note
Note

In many regions, laws and regulations require explainability in AI systems. For instance, the European Union's General Data Protection Regulation (GDPR) gives individuals the right to receive explanations for automated decisions that affect them, such as loan approvals or job screening. This means organizations must be able to provide clear and understandable reasons for their AI-driven decisions.

question mark

Which of the following is a primary ethical benefit of using explainable AI (XAI)?

Select the correct answer

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 3

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Awesome!

Completion rate improved to 6.67

bookEthical and Social Implications

Desliza para mostrar el menú

When you use artificial intelligence in real-world applications, you must consider the ethical principles that guide responsible AI development and deployment. Four key principles—transparency, fairness, accountability, and user empowerment—are central to explainable AI (XAI). Transparency means making the inner workings and decisions of AI systems understandable to users and stakeholders. This allows people to see why a system made a particular recommendation or prediction. Fairness is about ensuring that AI systems do not produce biased or discriminatory outcomes. By making models explainable, you can more easily detect and correct unfair patterns in data or decisions. Accountability means that developers, organizations, and users can be held responsible for the actions and outcomes of AI systems. If an AI decision leads to harm or error, explainability helps trace back what happened and why. Finally, user empowerment refers to giving users the information and tools they need to understand, question, and challenge AI decisions. When users know how and why an AI system works, they can make better-informed choices and trust the technology more.

Note
Note

In many regions, laws and regulations require explainability in AI systems. For instance, the European Union's General Data Protection Regulation (GDPR) gives individuals the right to receive explanations for automated decisions that affect them, such as loan approvals or job screening. This means organizations must be able to provide clear and understandable reasons for their AI-driven decisions.

question mark

Which of the following is a primary ethical benefit of using explainable AI (XAI)?

Select the correct answer

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 3
some-alt