Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Explore Dataset | Model Building
Principal Component Analysis
course content

Contenido del Curso

Principal Component Analysis

Principal Component Analysis

1. What is Principal Component Analysis
2. Basic Concepts of PCA
3. Model Building
4. Results Analysis

bookExplore Dataset

Now we will take a closer look at the creation of a PCA model using the example of one dataset. As a dataset, we will use wine from the scikit-learn set. It contains 13 wine characteristics and 3 classes. It is especially convenient for us because there are no categorical variables in it.

Let's load the dataset:

Now let's explore the dataset to understand what data we are working with. Let's convert the numpy array X to a pandas dataframe and check the amount of missing data:

To get a complete description of each column (mean, standard deviation, etc.), use the .describe() method:

Before loading the dataset into the PCA model, let's process our data. Based on the previous lessons, you may have noticed that an important step is data standardization. We implement this using the StandardScaler() class:

Tarea

Read the data from the train.csv (from web) file. Remove the "Id" column from the dataset and standardize it.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 2
toggle bottom row

bookExplore Dataset

Now we will take a closer look at the creation of a PCA model using the example of one dataset. As a dataset, we will use wine from the scikit-learn set. It contains 13 wine characteristics and 3 classes. It is especially convenient for us because there are no categorical variables in it.

Let's load the dataset:

Now let's explore the dataset to understand what data we are working with. Let's convert the numpy array X to a pandas dataframe and check the amount of missing data:

To get a complete description of each column (mean, standard deviation, etc.), use the .describe() method:

Before loading the dataset into the PCA model, let's process our data. Based on the previous lessons, you may have noticed that an important step is data standardization. We implement this using the StandardScaler() class:

Tarea

Read the data from the train.csv (from web) file. Remove the "Id" column from the dataset and standardize it.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 2
toggle bottom row

bookExplore Dataset

Now we will take a closer look at the creation of a PCA model using the example of one dataset. As a dataset, we will use wine from the scikit-learn set. It contains 13 wine characteristics and 3 classes. It is especially convenient for us because there are no categorical variables in it.

Let's load the dataset:

Now let's explore the dataset to understand what data we are working with. Let's convert the numpy array X to a pandas dataframe and check the amount of missing data:

To get a complete description of each column (mean, standard deviation, etc.), use the .describe() method:

Before loading the dataset into the PCA model, let's process our data. Based on the previous lessons, you may have noticed that an important step is data standardization. We implement this using the StandardScaler() class:

Tarea

Read the data from the train.csv (from web) file. Remove the "Id" column from the dataset and standardize it.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Now we will take a closer look at the creation of a PCA model using the example of one dataset. As a dataset, we will use wine from the scikit-learn set. It contains 13 wine characteristics and 3 classes. It is especially convenient for us because there are no categorical variables in it.

Let's load the dataset:

Now let's explore the dataset to understand what data we are working with. Let's convert the numpy array X to a pandas dataframe and check the amount of missing data:

To get a complete description of each column (mean, standard deviation, etc.), use the .describe() method:

Before loading the dataset into the PCA model, let's process our data. Based on the previous lessons, you may have noticed that an important step is data standardization. We implement this using the StandardScaler() class:

Tarea

Read the data from the train.csv (from web) file. Remove the "Id" column from the dataset and standardize it.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Sección 3. Capítulo 2
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
some-alt