Implementing Derivatives to Python
Derivatives are fundamental in calculus and widely used in data science, optimization, and machine learning. In Python, we can compute derivatives symbolically using sympy
and visualize them using matplotlib
.
1. Computing Derivatives Symbolically
# Define symbolic variable x
x = sp.symbols('x')
# Define the functions
f1 = sp.exp(x)
f2 = 1 / (1 + sp.exp(-x))
# Compute derivatives symbolically
df1 = sp.diff(f1, x)
df2 = sp.diff(f2, x)
Explanation:
- We define
x
as a symbolic variable usingsp.symbols('x')
; - The function
sp.diff(f, x)
computes the derivative off
with respect tox
; - This allows us to manipulate derivatives algebraically in Python.
2. Evaluating and Plotting Functions and Their Derivatives
# Convert symbolic functions to numerical functions for plotting
f1_lambda = sp.lambdify(x, f1, 'numpy')
df1_lambda = sp.lambdify(x, df1, 'numpy')
f2_lambda = sp.lambdify(x, f2, 'numpy')
df2_lambda = sp.lambdify(x, df2, 'numpy')
Explanation:
sp.lambdify(x, f, 'numpy')
converts a symbolic function into a numerical function that can be evaluated usingnumpy
;- This is required because
matplotlib
andnumpy
operate on numerical arrays, not symbolic expressions.
3. Printing Derivative Evaluations for Key Points
To verify our calculations, we print derivative values at x = [-5, 0, 5]
.
# Evaluate derivatives at key points
test_points = [-5, 0, 5]
for x_val in test_points:
print(f"x = {x_val}: e^x = {f2_lambda(x_val):.4f}, e^x' = {df2_lambda(x_val):.4f}")
print(f"x = {x_val}: sigmoid(x) = {f4_lambda(x_val):.4f}, sigmoid'(x) = {df4_lambda(x_val):.4f}")
print("-" * 50)
1. Why do we use sp.lambdify(x, f, 'numpy')
when plotting derivatives?
2. If we change x_vals = np.linspace(-5, 5, 10)
instead of 1000
, what will happen?
3. If we compute sp.diff(f4, x)
for the sigmoid function, why does the result involve δ(1−δ)?
4. When comparing the graphs of f(x)=ex and its derivative, which of the following is true?
¡Gracias por tus comentarios!
Pregunte a AI
Pregunte a AI
Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla
Awesome!
Completion rate improved to 1.89
Implementing Derivatives to Python
Desliza para mostrar el menú
Derivatives are fundamental in calculus and widely used in data science, optimization, and machine learning. In Python, we can compute derivatives symbolically using sympy
and visualize them using matplotlib
.
1. Computing Derivatives Symbolically
# Define symbolic variable x
x = sp.symbols('x')
# Define the functions
f1 = sp.exp(x)
f2 = 1 / (1 + sp.exp(-x))
# Compute derivatives symbolically
df1 = sp.diff(f1, x)
df2 = sp.diff(f2, x)
Explanation:
- We define
x
as a symbolic variable usingsp.symbols('x')
; - The function
sp.diff(f, x)
computes the derivative off
with respect tox
; - This allows us to manipulate derivatives algebraically in Python.
2. Evaluating and Plotting Functions and Their Derivatives
# Convert symbolic functions to numerical functions for plotting
f1_lambda = sp.lambdify(x, f1, 'numpy')
df1_lambda = sp.lambdify(x, df1, 'numpy')
f2_lambda = sp.lambdify(x, f2, 'numpy')
df2_lambda = sp.lambdify(x, df2, 'numpy')
Explanation:
sp.lambdify(x, f, 'numpy')
converts a symbolic function into a numerical function that can be evaluated usingnumpy
;- This is required because
matplotlib
andnumpy
operate on numerical arrays, not symbolic expressions.
3. Printing Derivative Evaluations for Key Points
To verify our calculations, we print derivative values at x = [-5, 0, 5]
.
# Evaluate derivatives at key points
test_points = [-5, 0, 5]
for x_val in test_points:
print(f"x = {x_val}: e^x = {f2_lambda(x_val):.4f}, e^x' = {df2_lambda(x_val):.4f}")
print(f"x = {x_val}: sigmoid(x) = {f4_lambda(x_val):.4f}, sigmoid'(x) = {df4_lambda(x_val):.4f}")
print("-" * 50)
1. Why do we use sp.lambdify(x, f, 'numpy')
when plotting derivatives?
2. If we change x_vals = np.linspace(-5, 5, 10)
instead of 1000
, what will happen?
3. If we compute sp.diff(f4, x)
for the sigmoid function, why does the result involve δ(1−δ)?
4. When comparing the graphs of f(x)=ex and its derivative, which of the following is true?
¡Gracias por tus comentarios!