Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Implementing Rational Functions in Python | Functions and Their Properties
Mathematics for Data Science

bookImplementing Rational Functions in Python

Unlike previous functions, rational functions require special handling when visualizing them in Python. The presence of undefined points and infinite behavior means we must carefully split the domain to avoid mathematical errors.

1. Defining the Function

We define our rational function as:

def rational_function(x):
    return 1 / (x - 1)

Key Considerations:

  • x=1x = 1 must be excluded from calculations to avoid division by zero;
  • The function will be split into two domains (left and right of x=1x = 1).

2. Splitting the Domain

To avoid division by zero, we generate two separate sets of x-values:

x_left = np.linspace(-4, 0.99, 250)  # Left of x = 1
x_right = np.linspace(1.01, 4, 250)  # Right of x = 1

The values 0.99 and 1.01 ensure we never include x=1x = 1, preventing errors.

3. Plotting the Function

plt.plot(x_left, y_left, color='blue', linewidth=2, label=r"$f(x) = \frac{1}{x - 1}$")
plt.plot(x_right, y_right, color='blue', linewidth=2)

The function jumps at x=1x = 1, so we need to plot it in two pieces.

4. Marking Asymptotes and Intercepts

  • Vertical Asymptote (x=1x = 1):
def rational_function(x):
    return 1 / (x - 1)
  • Horizontal Asymptote (y=0y = 0):
plt.axhline(0, color='green', linestyle='--', 
            linewidth=1, label="Horizontal Asymptote (y=0)")
  • Y-Intercept at x=0x = 0:
y_intercept = rational_function(0)
plt.scatter(0, y_intercept, color='purple', label="Y-Intercept")

5. Adding Directional Arrows

To indicate the function extends infinitely:

plt.annotate('', xy=(x_right[-1], y_right[-1]), xytext=(x_right[-2], y_right[-2]), arrowprops=dict(arrowstyle='->', color='blue', linewidth=1.5))

1. How do you define a rational function in Python that avoids division by zero?

2. What does the following code do?

3. How do we visualize a vertical asymptote in matplotlib?

question mark

How do you define a rational function in Python that avoids division by zero?

Select the correct answer

question mark

What does the following code do?

Select the correct answer

question mark

How do we visualize a vertical asymptote in matplotlib?

Select the correct answer

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 1. Capítulo 6

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Suggested prompts:

Can you explain why we need to split the domain for rational functions?

How do I identify vertical and horizontal asymptotes in a rational function?

What does the code do to avoid division by zero errors?

Awesome!

Completion rate improved to 1.89

bookImplementing Rational Functions in Python

Desliza para mostrar el menú

Unlike previous functions, rational functions require special handling when visualizing them in Python. The presence of undefined points and infinite behavior means we must carefully split the domain to avoid mathematical errors.

1. Defining the Function

We define our rational function as:

def rational_function(x):
    return 1 / (x - 1)

Key Considerations:

  • x=1x = 1 must be excluded from calculations to avoid division by zero;
  • The function will be split into two domains (left and right of x=1x = 1).

2. Splitting the Domain

To avoid division by zero, we generate two separate sets of x-values:

x_left = np.linspace(-4, 0.99, 250)  # Left of x = 1
x_right = np.linspace(1.01, 4, 250)  # Right of x = 1

The values 0.99 and 1.01 ensure we never include x=1x = 1, preventing errors.

3. Plotting the Function

plt.plot(x_left, y_left, color='blue', linewidth=2, label=r"$f(x) = \frac{1}{x - 1}$")
plt.plot(x_right, y_right, color='blue', linewidth=2)

The function jumps at x=1x = 1, so we need to plot it in two pieces.

4. Marking Asymptotes and Intercepts

  • Vertical Asymptote (x=1x = 1):
def rational_function(x):
    return 1 / (x - 1)
  • Horizontal Asymptote (y=0y = 0):
plt.axhline(0, color='green', linestyle='--', 
            linewidth=1, label="Horizontal Asymptote (y=0)")
  • Y-Intercept at x=0x = 0:
y_intercept = rational_function(0)
plt.scatter(0, y_intercept, color='purple', label="Y-Intercept")

5. Adding Directional Arrows

To indicate the function extends infinitely:

plt.annotate('', xy=(x_right[-1], y_right[-1]), xytext=(x_right[-2], y_right[-2]), arrowprops=dict(arrowstyle='->', color='blue', linewidth=1.5))

1. How do you define a rational function in Python that avoids division by zero?

2. What does the following code do?

3. How do we visualize a vertical asymptote in matplotlib?

question mark

How do you define a rational function in Python that avoids division by zero?

Select the correct answer

question mark

What does the following code do?

Select the correct answer

question mark

How do we visualize a vertical asymptote in matplotlib?

Select the correct answer

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 1. Capítulo 6
some-alt