Exploring Data [3/3]
Summary of DataFrame' columns
If you need additional information about DataFrame, i.e., memory usage, number of non-null values in addition to the considered in the previous chapter, use the .info()
method.
1234567# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # DataFrame' columns information print(df.info())
Numerical columns' summary
For numerical columns you can get the mean, minimal, maximal values, 25%, 50%, 75% quantiles, standart deviation using the .describe()
method.
1234567# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # Numerical columns' summary print(df.describe())
¡Gracias por tus comentarios!
Pregunte a AI
Pregunte a AI
Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla
Pregunte me preguntas sobre este tema
Resumir este capítulo
Mostrar ejemplos del mundo real
Awesome!
Completion rate improved to 3.33
Exploring Data [3/3]
Desliza para mostrar el menú
Summary of DataFrame' columns
If you need additional information about DataFrame, i.e., memory usage, number of non-null values in addition to the considered in the previous chapter, use the .info()
method.
1234567# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # DataFrame' columns information print(df.info())
Numerical columns' summary
For numerical columns you can get the mean, minimal, maximal values, 25%, 50%, 75% quantiles, standart deviation using the .describe()
method.
1234567# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # Numerical columns' summary print(df.describe())
¡Gracias por tus comentarios!