Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Exploring Data [3/3] | Reading and Exploring Data
Introduction to pandas [track]
course content

Contenido del Curso

Introduction to pandas [track]

Introduction to pandas [track]

1. Basics
2. Reading and Exploring Data
3. Accessing DataFrame Values
4. Aggregate Functions

bookExploring Data [3/3]

Summary of DataFrame' columns

If you need additional information about DataFrame, i.e., memory usage, number of non-null values in addition to the considered in the previous chapter, use the .info() method.

1234567
# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # DataFrame' columns information print(df.info())
copy

Numerical columns' summary

For numerical columns you can get the mean, minimal, maximal values, 25%, 50%, 75% quantiles, standart deviation using the .describe() method.

1234567
# Importing library import pandas as pd # Reading csv file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/67798cef-5e7c-4fbc-af7d-ae96b4443c0a/audi.csv') # Numerical columns' summary print(df.describe())
copy

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 6
some-alt