Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Access 2-D and 3-D Arrays | Indexing and Slicing
NumPy in a Nutshell
course content

Contenido del Curso

NumPy in a Nutshell

NumPy in a Nutshell

1. Getting Started with NumPy
2. Dimensions in Arrays
3. Indexing and Slicing
4. Important Functions

book Access 2-D and 3-D Arrays

Let's have a look at an example of a 2-D array with axis numbering:

Let's have a look at an example of indexing (both positive and negative) in 2-D arrays:

Let's examine the syntax of slicing: array[start_row: end_row: step_row, start_column: end_column: step_column], where:

  • start_row is the index from which row slicing begins;
  • end_row is the index where row slicing stops (note that this index is not included);
  • step_row is the parameter that specifies the intervals between row indices;
  • start_column is the index from which column slicing starts;
  • end_column is the index where column slicing ends (note that this index is not included);
  • step_column is the parameter that determines the intervals between column indices.

Now, let's refer to the following image:

Let's have a look at an example of a 3-D array with axis numbering:

Tarea

Consider the following array: [[6, 5, 7, 8], [65, 2, 7, 9]].

  1. Retrieve the fourth element from the first part of the array [6, 5, 7, 8], and the first element from the second part of the array [65, 2, 7, 9].
  2. Multiply the obtained elements together.
  3. Display the product of the obtained elements.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 3
toggle bottom row

book Access 2-D and 3-D Arrays

Let's have a look at an example of a 2-D array with axis numbering:

Let's have a look at an example of indexing (both positive and negative) in 2-D arrays:

Let's examine the syntax of slicing: array[start_row: end_row: step_row, start_column: end_column: step_column], where:

  • start_row is the index from which row slicing begins;
  • end_row is the index where row slicing stops (note that this index is not included);
  • step_row is the parameter that specifies the intervals between row indices;
  • start_column is the index from which column slicing starts;
  • end_column is the index where column slicing ends (note that this index is not included);
  • step_column is the parameter that determines the intervals between column indices.

Now, let's refer to the following image:

Let's have a look at an example of a 3-D array with axis numbering:

Tarea

Consider the following array: [[6, 5, 7, 8], [65, 2, 7, 9]].

  1. Retrieve the fourth element from the first part of the array [6, 5, 7, 8], and the first element from the second part of the array [65, 2, 7, 9].
  2. Multiply the obtained elements together.
  3. Display the product of the obtained elements.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 3
toggle bottom row

book Access 2-D and 3-D Arrays

Let's have a look at an example of a 2-D array with axis numbering:

Let's have a look at an example of indexing (both positive and negative) in 2-D arrays:

Let's examine the syntax of slicing: array[start_row: end_row: step_row, start_column: end_column: step_column], where:

  • start_row is the index from which row slicing begins;
  • end_row is the index where row slicing stops (note that this index is not included);
  • step_row is the parameter that specifies the intervals between row indices;
  • start_column is the index from which column slicing starts;
  • end_column is the index where column slicing ends (note that this index is not included);
  • step_column is the parameter that determines the intervals between column indices.

Now, let's refer to the following image:

Let's have a look at an example of a 3-D array with axis numbering:

Tarea

Consider the following array: [[6, 5, 7, 8], [65, 2, 7, 9]].

  1. Retrieve the fourth element from the first part of the array [6, 5, 7, 8], and the first element from the second part of the array [65, 2, 7, 9].
  2. Multiply the obtained elements together.
  3. Display the product of the obtained elements.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Let's have a look at an example of a 2-D array with axis numbering:

Let's have a look at an example of indexing (both positive and negative) in 2-D arrays:

Let's examine the syntax of slicing: array[start_row: end_row: step_row, start_column: end_column: step_column], where:

  • start_row is the index from which row slicing begins;
  • end_row is the index where row slicing stops (note that this index is not included);
  • step_row is the parameter that specifies the intervals between row indices;
  • start_column is the index from which column slicing starts;
  • end_column is the index where column slicing ends (note that this index is not included);
  • step_column is the parameter that determines the intervals between column indices.

Now, let's refer to the following image:

Let's have a look at an example of a 3-D array with axis numbering:

Tarea

Consider the following array: [[6, 5, 7, 8], [65, 2, 7, 9]].

  1. Retrieve the fourth element from the first part of the array [6, 5, 7, 8], and the first element from the second part of the array [65, 2, 7, 9].
  2. Multiply the obtained elements together.
  3. Display the product of the obtained elements.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Sección 3. Capítulo 3
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
some-alt