Challenge: Compose a Data Pipeline
Tarea
Swipe to start coding
You are building a scikit-learn data pipeline that keeps preprocessing and modeling in a single reusable object.
- Create a
ColumnTransformernamedpreprocessor:- For numeric columns, use
SimpleImputer(strategy="mean"); - For categorical columns, use
OneHotEncoder(sparse_output=False, handle_unknown="ignore").
- For numeric columns, use
- Create a
Pipelinenamedpipelinewith two steps:"preprocessor": thepreprocessor;"model": aLogisticRegressionestimator withrandom_state=42.
- Fit
pipelineusingX_trainandy_train. - Predict labels for
X_testand store them iny_pred.
Solución
¿Todo estuvo claro?
¡Gracias por tus comentarios!
Sección 3. Capítulo 4
single
Pregunte a AI
Pregunte a AI
Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla
Genial!
Completion tasa mejorada a 5.26
Challenge: Compose a Data Pipeline
Desliza para mostrar el menú
Tarea
Swipe to start coding
You are building a scikit-learn data pipeline that keeps preprocessing and modeling in a single reusable object.
- Create a
ColumnTransformernamedpreprocessor:- For numeric columns, use
SimpleImputer(strategy="mean"); - For categorical columns, use
OneHotEncoder(sparse_output=False, handle_unknown="ignore").
- For numeric columns, use
- Create a
Pipelinenamedpipelinewith two steps:"preprocessor": thepreprocessor;"model": aLogisticRegressionestimator withrandom_state=42.
- Fit
pipelineusingX_trainandy_train. - Predict labels for
X_testand store them iny_pred.
Solución
¿Todo estuvo claro?
¡Gracias por tus comentarios!
Sección 3. Capítulo 4
single