Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Problem B. Minimum path | Problems
Dynamic Programming

bookProblem B. Minimum path

The tasks in this section contain test function calls. Please do not change this code; otherwise, the assignment may not be accepted.

Given a two-dimensional array mat with values in it. Each value means the price we should pay for entering it. There is frog sitting in the top-left cell who wants to move to top-right. The frog can move to the nearest cell either right or down per one move. When it enters a cell, frog has to pay mat[i][j] for visiting it. Your goal is to find a path with minimal price. Return the cost of such a path.

Example 1

The orange path is minimum and costs 25.

Example 2

Input :

[[1, 3, 4],

[2, 1, 5],

[4, 6, 7]]

Output: 16

The path looks like:

Example 3

Input:

[[1, 2, 4],

[8, 5, 1]]

Output: 8

The Optimal Substructure here is to find the minimum path for each cell based on previous ones:

mat[i][j] = mat[i][j] + min(mat[i-1][j], mat[i][j-1])

This way, the minimum path to the mat[i][j] cell includes the price of this cell and the minimum price to one of the available cells (top or left).

Tarea

Swipe to start coding

Create an algorithm to find the shortest path for the frog.

  1. Use data structure mat[n][n] as DS for storing the cost to the cell mat[i][j].
  2. Consider that you can visit current cell mat[i][j] only from left or top cell (if it possible).
  3. The answer is the value of mat[-1][-1].

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 2
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Suggested prompts:

Resumir este capítulo

Explicar el código en file

Explicar por qué file no resuelve la tarea

close

Awesome!

Completion rate improved to 8.33

bookProblem B. Minimum path

Desliza para mostrar el menú

The tasks in this section contain test function calls. Please do not change this code; otherwise, the assignment may not be accepted.

Given a two-dimensional array mat with values in it. Each value means the price we should pay for entering it. There is frog sitting in the top-left cell who wants to move to top-right. The frog can move to the nearest cell either right or down per one move. When it enters a cell, frog has to pay mat[i][j] for visiting it. Your goal is to find a path with minimal price. Return the cost of such a path.

Example 1

The orange path is minimum and costs 25.

Example 2

Input :

[[1, 3, 4],

[2, 1, 5],

[4, 6, 7]]

Output: 16

The path looks like:

Example 3

Input:

[[1, 2, 4],

[8, 5, 1]]

Output: 8

The Optimal Substructure here is to find the minimum path for each cell based on previous ones:

mat[i][j] = mat[i][j] + min(mat[i-1][j], mat[i][j-1])

This way, the minimum path to the mat[i][j] cell includes the price of this cell and the minimum price to one of the available cells (top or left).

Tarea

Swipe to start coding

Create an algorithm to find the shortest path for the frog.

  1. Use data structure mat[n][n] as DS for storing the cost to the cell mat[i][j].
  2. Consider that you can visit current cell mat[i][j] only from left or top cell (if it possible).
  3. The answer is the value of mat[-1][-1].

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

close

Awesome!

Completion rate improved to 8.33
Sección 2. Capítulo 2
single

single

some-alt