Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Overlapping Subproblems Property: Tabulation | Intro to Dynamic Programming
Dynamic Programming

bookOverlapping Subproblems Property: Tabulation

Tabulation

"First, solve all necessary subproblems, and then solve the main problem."

Such a principle is called the Bottom-Up approach. We start with trivial subproblems and move from the bottom to the answer. This principle also uses additional tables to store solutions.

Example

Let’s create an array dp to store the solutions. (dp can be a common name for data structure in a class of DP problems).

1234567891011121314
def fib(n): # Array declaration dp = [0]*(n+1) # Base case assignment dp[0] = 0 dp[1] = 1 # Calculating and storing the values for trivial cases for i in range(2 , n+1): dp[i] = dp[i-1] + dp[i-2] return dp[n]
copy

Since we know how to calculate the next element using the previous two elements, let's move from the pre-defined first two elements (base case) and figure out the solution for the 3rd sub-problem. After that, solve the 4th sub-problem using the 2nd and 3rd, and so on, until the last element.

Tarea

Swipe to start coding

Look at the following task code for the Fibonacci problem.

  1. Fix it to make the solution correct.
  2. Call the function for n = 16 and output the 16th Fibonacci number.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 1. Capítulo 3
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Suggested prompts:

Resumir este capítulo

Explicar el código en file

Explicar por qué file no resuelve la tarea

close

Awesome!

Completion rate improved to 8.33

bookOverlapping Subproblems Property: Tabulation

Desliza para mostrar el menú

Tabulation

"First, solve all necessary subproblems, and then solve the main problem."

Such a principle is called the Bottom-Up approach. We start with trivial subproblems and move from the bottom to the answer. This principle also uses additional tables to store solutions.

Example

Let’s create an array dp to store the solutions. (dp can be a common name for data structure in a class of DP problems).

1234567891011121314
def fib(n): # Array declaration dp = [0]*(n+1) # Base case assignment dp[0] = 0 dp[1] = 1 # Calculating and storing the values for trivial cases for i in range(2 , n+1): dp[i] = dp[i-1] + dp[i-2] return dp[n]
copy

Since we know how to calculate the next element using the previous two elements, let's move from the pre-defined first two elements (base case) and figure out the solution for the 3rd sub-problem. After that, solve the 4th sub-problem using the 2nd and 3rd, and so on, until the last element.

Tarea

Swipe to start coding

Look at the following task code for the Fibonacci problem.

  1. Fix it to make the solution correct.
  2. Call the function for n = 16 and output the 16th Fibonacci number.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

close

Awesome!

Completion rate improved to 8.33
Sección 1. Capítulo 3
single

single

some-alt