Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Handle Mismatched Data Joins | Joining Data Frames in R
Practice
Projects
Quizzes & Challenges
Cuestionarios
Challenges
/
Data Manipulation in R (Core)

bookChallenge: Handle Mismatched Data Joins

You have explored the basics of joining data frames in R, including how to combine tables using matching keys. Now, you will practice handling more complex scenarios where data frames have mismatched keys—meaning not every row in one data frame has a corresponding match in the other. This is a common challenge in real-world data integration tasks, and mastering these join types is essential for robust analytics workflows. In this challenge, you will use right_join(), full_join(), and anti_join() to combine data frames and identify unmatched rows.

Tarea

Swipe to start coding

Practice joining two data frames with mismatched keys and identifying unmatched rows.

  • Use right_join() to combine customers and orders, ensuring all rows from orders are kept, and matching where possible.
  • Use full_join() to combine customers and orders, ensuring all rows from both data frames are included, matching where possible.
  • Use anti_join() to find all customers in customers who do not have a matching row in orders.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 4. Capítulo 4
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

close

bookChallenge: Handle Mismatched Data Joins

Desliza para mostrar el menú

You have explored the basics of joining data frames in R, including how to combine tables using matching keys. Now, you will practice handling more complex scenarios where data frames have mismatched keys—meaning not every row in one data frame has a corresponding match in the other. This is a common challenge in real-world data integration tasks, and mastering these join types is essential for robust analytics workflows. In this challenge, you will use right_join(), full_join(), and anti_join() to combine data frames and identify unmatched rows.

Tarea

Swipe to start coding

Practice joining two data frames with mismatched keys and identifying unmatched rows.

  • Use right_join() to combine customers and orders, ensuring all rows from orders are kept, and matching where possible.
  • Use full_join() to combine customers and orders, ensuring all rows from both data frames are included, matching where possible.
  • Use anti_join() to find all customers in customers who do not have a matching row in orders.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 4. Capítulo 4
single

single

some-alt