Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Integrate Multiple Data Sources | Joining Data Frames in R
Data Manipulation in R (Core)

bookChallenge: Integrate Multiple Data Sources

In real-world analytics, you often need to integrate information from multiple sources. This means joining several data frames and making decisions about how to handle missing values that result from incomplete matches across those sources. You will now apply your joining and data cleaning skills to build a unified dataset that could power business analysis.

Tarea

Swipe to start coding

Combine three related data frames—customers, orders, and payments—into a unified analytics dataset. Ensure the resulting data frame contains all records from each source, filling in missing information as appropriate.

  • Join customers and orders on customer_id so that all customers and all orders are included, even if there is no match.
  • Join the result with payments on order_id so that all orders and all payments are included, even if there is no match.
  • Fill missing values in the name column with "Unknown".
  • Fill missing values in the order_total and payment_amount columns with 0.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 4. Capítulo 6
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

close

bookChallenge: Integrate Multiple Data Sources

Desliza para mostrar el menú

In real-world analytics, you often need to integrate information from multiple sources. This means joining several data frames and making decisions about how to handle missing values that result from incomplete matches across those sources. You will now apply your joining and data cleaning skills to build a unified dataset that could power business analysis.

Tarea

Swipe to start coding

Combine three related data frames—customers, orders, and payments—into a unified analytics dataset. Ensure the resulting data frame contains all records from each source, filling in missing information as appropriate.

  • Join customers and orders on customer_id so that all customers and all orders are included, even if there is no match.
  • Join the result with payments on order_id so that all orders and all payments are included, even if there is no match.
  • Fill missing values in the name column with "Unknown".
  • Fill missing values in the order_total and payment_amount columns with 0.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 4. Capítulo 6
single

single

some-alt