Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Poisson Distribution 2/3 | Distributions
Probability Theory Update

Desliza para mostrar el menú

book
Poisson Distribution 2/3

As you remember, with the .pmf() function, we can calculate the probability over a range using the addition rule. Look at the example: Example 1/2: We know that per day the expected value of users is 100. Calculate the probability that 110 users will visit the app. This distribution is discrete, so to calculate the probability of getting the exact number of customers, we can use the .pmf() function with two parameters: the first is our desored number of events, and the second is lambda.

Python realization:

We will use .pmf() function for the Poisson distribution using stats.poisson.pmf().

123
import scipy.stats as stats probability = stats.poisson.pmf(110, 100) print("The probability is", probability * 100, "%")
copy

Example 2/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will equal 16, 17, 18, or 19.

Python realization:

12345678910
import scipy.stats as stats prob_1 = stats.poisson.pmf(16, 15) prob_2 = stats.poisson.pmf(17, 15) prob_3 = stats.poisson.pmf(18, 15) prob_4 = stats.poisson.pmf(19, 15) probability = prob_1 + prob_2 + prob_3 + prob_4 print("The probability is", probability * 100, "%")
copy

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 5. Capítulo 2
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

close

Awesome!

Completion rate improved to 3.7

book
Poisson Distribution 2/3

As you remember, with the .pmf() function, we can calculate the probability over a range using the addition rule. Look at the example: Example 1/2: We know that per day the expected value of users is 100. Calculate the probability that 110 users will visit the app. This distribution is discrete, so to calculate the probability of getting the exact number of customers, we can use the .pmf() function with two parameters: the first is our desored number of events, and the second is lambda.

Python realization:

We will use .pmf() function for the Poisson distribution using stats.poisson.pmf().

123
import scipy.stats as stats probability = stats.poisson.pmf(110, 100) print("The probability is", probability * 100, "%")
copy

Example 2/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will equal 16, 17, 18, or 19.

Python realization:

12345678910
import scipy.stats as stats prob_1 = stats.poisson.pmf(16, 15) prob_2 = stats.poisson.pmf(17, 15) prob_3 = stats.poisson.pmf(18, 15) prob_4 = stats.poisson.pmf(19, 15) probability = prob_1 + prob_2 + prob_3 + prob_4 print("The probability is", probability * 100, "%")
copy

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

close

Awesome!

Completion rate improved to 3.7

Desliza para mostrar el menú

some-alt