Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Poisson Distribution 3/3 | Distributions
Probability Theory Update
course content

Contenido del Curso

Probability Theory Update

Probability Theory Update

1. Probability Basics
2. Statistical Dependence
3. Learn Crucial Terms
4. Probability Functions
5. Distributions

bookPoisson Distribution 3/3

As you remember, with the .cdf() function, we can calculate the probability that the random variable will take a value less then or equal a defined number. Look at the example: Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less or equal 12.

Python realization:

12345
import scipy.stats as stats probability = stats.poisson.cdf(12, 15) print("The probability is", probability * 100, "%")
copy

Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less equal the number within the range from 5 to 11 (5; 11].

Python realization:

1234567891011
import scipy.stats as stats prob_1 = stats.poisson.cdf(11, 15) prob_2 = stats.poisson.cdf(5, 15) probability = prob_1 - prob_2 print("The probability is", probability * 100, "%")
copy

When we subtract the second expression from the first, we leave the interval from 11 to 5 exclusive. Thus, using this calculation stats.poisson.cdf(11, 15), we will find the probability that our variable will take a value less than 11. And using this calculation stats.poisson.cdf(5, 15), we will find the probability that our variable will take a value less than or equal to 5.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 5. Capítulo 3
toggle bottom row

bookPoisson Distribution 3/3

As you remember, with the .cdf() function, we can calculate the probability that the random variable will take a value less then or equal a defined number. Look at the example: Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less or equal 12.

Python realization:

12345
import scipy.stats as stats probability = stats.poisson.cdf(12, 15) print("The probability is", probability * 100, "%")
copy

Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less equal the number within the range from 5 to 11 (5; 11].

Python realization:

1234567891011
import scipy.stats as stats prob_1 = stats.poisson.cdf(11, 15) prob_2 = stats.poisson.cdf(5, 15) probability = prob_1 - prob_2 print("The probability is", probability * 100, "%")
copy

When we subtract the second expression from the first, we leave the interval from 11 to 5 exclusive. Thus, using this calculation stats.poisson.cdf(11, 15), we will find the probability that our variable will take a value less than 11. And using this calculation stats.poisson.cdf(5, 15), we will find the probability that our variable will take a value less than or equal to 5.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 5. Capítulo 3
toggle bottom row

bookPoisson Distribution 3/3

As you remember, with the .cdf() function, we can calculate the probability that the random variable will take a value less then or equal a defined number. Look at the example: Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less or equal 12.

Python realization:

12345
import scipy.stats as stats probability = stats.poisson.cdf(12, 15) print("The probability is", probability * 100, "%")
copy

Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less equal the number within the range from 5 to 11 (5; 11].

Python realization:

1234567891011
import scipy.stats as stats prob_1 = stats.poisson.cdf(11, 15) prob_2 = stats.poisson.cdf(5, 15) probability = prob_1 - prob_2 print("The probability is", probability * 100, "%")
copy

When we subtract the second expression from the first, we leave the interval from 11 to 5 exclusive. Thus, using this calculation stats.poisson.cdf(11, 15), we will find the probability that our variable will take a value less than 11. And using this calculation stats.poisson.cdf(5, 15), we will find the probability that our variable will take a value less than or equal to 5.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

As you remember, with the .cdf() function, we can calculate the probability that the random variable will take a value less then or equal a defined number. Look at the example: Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less or equal 12.

Python realization:

12345
import scipy.stats as stats probability = stats.poisson.cdf(12, 15) print("The probability is", probability * 100, "%")
copy

Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less equal the number within the range from 5 to 11 (5; 11].

Python realization:

1234567891011
import scipy.stats as stats prob_1 = stats.poisson.cdf(11, 15) prob_2 = stats.poisson.cdf(5, 15) probability = prob_1 - prob_2 print("The probability is", probability * 100, "%")
copy

When we subtract the second expression from the first, we leave the interval from 11 to 5 exclusive. Thus, using this calculation stats.poisson.cdf(11, 15), we will find the probability that our variable will take a value less than 11. And using this calculation stats.poisson.cdf(5, 15), we will find the probability that our variable will take a value less than or equal to 5.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Sección 5. Capítulo 3
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
some-alt