Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende StandardScaler | Scaling Numerical Data
Introduction to Scikit Learn
course content

Contenido del Curso

Introduction to Scikit Learn

Introduction to Scikit Learn

1. The Very First Steps
2. Scaling Numerical Data
3. Models in Scikit Learn

book
StandardScaler

If the dataset is standardized, it will have a good optimization effect for many machine learning algorithms. To get standardized data you have to use the next formula:

Here we have the following values:

  • x_scaled - standardized feature element,
  • x - unnormalized feature element,
  • mean - mean value,
  • std - standard deviation value.

There is a function in the sklearn library that normalizes data according to the formula given above: MaxAbsScaler(). In order to work with this function, it must first be imported in such a way:

The main property of standardized data is that this data: mean = 0 and standard deviation = 1.

1
from sklearn.preprocessing import StandarsScaler
copy

This function works like the previous two, namely MinMaxScaler, MaxAbsScaler, and it works in a similar way. So, in this chapter there is no example of using StandartScaler function. You will use it on your own in the below task.

Let's try! If you have some difficulties, please, use hints.

Tarea

Swipe to start coding

You have wine dataset, we have worked with it recently. Please, standardize this data. To check, if StandardScaler function works correct, please dispay the mean and standard deviation. Pay attention: mean will be equal to 0 and std to 1.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 3
toggle bottom row

book
StandardScaler

If the dataset is standardized, it will have a good optimization effect for many machine learning algorithms. To get standardized data you have to use the next formula:

Here we have the following values:

  • x_scaled - standardized feature element,
  • x - unnormalized feature element,
  • mean - mean value,
  • std - standard deviation value.

There is a function in the sklearn library that normalizes data according to the formula given above: MaxAbsScaler(). In order to work with this function, it must first be imported in such a way:

The main property of standardized data is that this data: mean = 0 and standard deviation = 1.

1
from sklearn.preprocessing import StandarsScaler
copy

This function works like the previous two, namely MinMaxScaler, MaxAbsScaler, and it works in a similar way. So, in this chapter there is no example of using StandartScaler function. You will use it on your own in the below task.

Let's try! If you have some difficulties, please, use hints.

Tarea

Swipe to start coding

You have wine dataset, we have worked with it recently. Please, standardize this data. To check, if StandardScaler function works correct, please dispay the mean and standard deviation. Pay attention: mean will be equal to 0 and std to 1.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 3
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Lamentamos que algo salió mal. ¿Qué pasó?
some-alt