Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Challenge: Optimising Function Of Multiple Variables | Mathematical Analysis
Mathematics for Data Analysis and Modeling
course content

Contenido del Curso

Mathematics for Data Analysis and Modeling

Mathematics for Data Analysis and Modeling

1. Basic Mathematical Concepts and Definitions
2. Linear Algebra
3. Mathematical Analysis

bookChallenge: Optimising Function Of Multiple Variables

Tarea

The most commonly used loss function in linear regression is the Mean Squared Error (MSE) loss function. This function is the squared Euclidean distance between the variable's real value and the value we obtained using linear regression approximation. Since this is a function of several variables, we can optimize it using gradient descent.

Your task is to use the optimization method to find the best parameters of the linear regression function:

  1. Create an initial_params variable that will store initial values for parameters of the linear regression function.
  2. Provide minimization of the MSE function.
  3. Get the resulting optimal values of parameters.

Note

You can find more information about linear regression in Linear Regression with Python course.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 7
toggle bottom row

bookChallenge: Optimising Function Of Multiple Variables

Tarea

The most commonly used loss function in linear regression is the Mean Squared Error (MSE) loss function. This function is the squared Euclidean distance between the variable's real value and the value we obtained using linear regression approximation. Since this is a function of several variables, we can optimize it using gradient descent.

Your task is to use the optimization method to find the best parameters of the linear regression function:

  1. Create an initial_params variable that will store initial values for parameters of the linear regression function.
  2. Provide minimization of the MSE function.
  3. Get the resulting optimal values of parameters.

Note

You can find more information about linear regression in Linear Regression with Python course.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 7
toggle bottom row

bookChallenge: Optimising Function Of Multiple Variables

Tarea

The most commonly used loss function in linear regression is the Mean Squared Error (MSE) loss function. This function is the squared Euclidean distance between the variable's real value and the value we obtained using linear regression approximation. Since this is a function of several variables, we can optimize it using gradient descent.

Your task is to use the optimization method to find the best parameters of the linear regression function:

  1. Create an initial_params variable that will store initial values for parameters of the linear regression function.
  2. Provide minimization of the MSE function.
  3. Get the resulting optimal values of parameters.

Note

You can find more information about linear regression in Linear Regression with Python course.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Tarea

The most commonly used loss function in linear regression is the Mean Squared Error (MSE) loss function. This function is the squared Euclidean distance between the variable's real value and the value we obtained using linear regression approximation. Since this is a function of several variables, we can optimize it using gradient descent.

Your task is to use the optimization method to find the best parameters of the linear regression function:

  1. Create an initial_params variable that will store initial values for parameters of the linear regression function.
  2. Provide minimization of the MSE function.
  3. Get the resulting optimal values of parameters.

Note

You can find more information about linear regression in Linear Regression with Python course.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Sección 3. Capítulo 7
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
some-alt