Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: Solving the Optimisation Problem | Mathematical Analysis
Mathematics for Data Analysis and Modeling
course content

Contenido del Curso

Mathematics for Data Analysis and Modeling

Mathematics for Data Analysis and Modeling

1. Basic Mathematical Concepts and Definitions
2. Linear Algebra
3. Mathematical Analysis

book
Challenge: Solving the Optimisation Problem

Tarea
test

Swipe to begin your solution

Let's consider a physics-related optimization problem where we need to find the maximum height reached by an object thrown vertically upward with a given initial velocity.

We have the following equation:
h = v * t - 0.5 * g * t**2
that describes the motion of an object.

Our task is to find the time t when the object reaches its maximum height and then find the maximum height h_max.

  1. Calculate the derivatives of the first and second order for the h function.
  2. Find critical points of h function.
  3. Check if these critical points are points of the maximum of the function h.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 5
toggle bottom row

book
Challenge: Solving the Optimisation Problem

Tarea
test

Swipe to begin your solution

Let's consider a physics-related optimization problem where we need to find the maximum height reached by an object thrown vertically upward with a given initial velocity.

We have the following equation:
h = v * t - 0.5 * g * t**2
that describes the motion of an object.

Our task is to find the time t when the object reaches its maximum height and then find the maximum height h_max.

  1. Calculate the derivatives of the first and second order for the h function.
  2. Find critical points of h function.
  3. Check if these critical points are points of the maximum of the function h.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 3. Capítulo 5
Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
We're sorry to hear that something went wrong. What happened?
some-alt