Contenido del Curso
Mathematics for Data Analysis and Modeling
Mathematics for Data Analysis and Modeling
1. Basic Mathematical Concepts and Definitions
2. Linear Algebra
Numerical Operations on Vectors and MatricesChallenge: Calculate the Matrix Multiplication ResultMatrix DeterminantScaling Factor of the Linear TransformationChallenge: Figures' Linear TransformationsInversed and Transposed MatricesSystem of Linear EquationsChallenge: Solving the Task Using SLEEigenvalues and Eigenvectors
Challenge: Figures' Linear Transformations
Tarea
Swipe to begin your solution
Linear transformations of the figures are commonly used in computer graphics. There are 2 main types of linear transformations:
- Rotation transformation rotates a figure around a specific point or axis.
- Scale transformation resizes a figure by changing its size along each axis.
Your task is to apply all these transformations to a rectangle one by one. As a result, we will have a composition of transformations:
- Сreate rotation matrix that rotates a figure by
np.pi / 3
degrees. - Create a scaling matrix with the parameters
scale_x = 2
andscale_y = 0.5
. - Apply the
rotation_matrix
to the square. - Apply the
scaling_matrix
to the result of the previous transformation.
Solución
Cambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?
¡Gracias por tus comentarios!
Sección 2. Capítulo 5
Challenge: Figures' Linear Transformations
Tarea
Swipe to begin your solution
Linear transformations of the figures are commonly used in computer graphics. There are 2 main types of linear transformations:
- Rotation transformation rotates a figure around a specific point or axis.
- Scale transformation resizes a figure by changing its size along each axis.
Your task is to apply all these transformations to a rectangle one by one. As a result, we will have a composition of transformations:
- Сreate rotation matrix that rotates a figure by
np.pi / 3
degrees. - Create a scaling matrix with the parameters
scale_x = 2
andscale_y = 0.5
. - Apply the
rotation_matrix
to the square. - Apply the
scaling_matrix
to the result of the previous transformation.
Solución
Cambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?
¡Gracias por tus comentarios!
Sección 2. Capítulo 5
Cambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones