Challenge: Implement Negative Selection Algorithm
Swipe to start coding
In this challenge, you will implement a basic negative selection algorithm (NSA) for anomaly detection.
This algorithm is inspired by the human immune system, which learns to distinguish between self (normal) and non-self (foreign) patterns.
You are given a list of self_patterns representing normal data.
Your task is to implement two core functions:
- Generate detectors: in the
generate_detectorsfunction, you must:- Generate random
candidatepatterns. - Check if the
candidatepattern is in theself_set. - Only add the
candidateto thedetectorsset if it is not a "self" pattern.
- Generate random
- Classify patterns: in the
classify_patternsfunction, you must:- Check each
patternfrom thetest_patternslist. - If the
patternis in theself_set, classify it as'self'. - Else, if the
patternis in thedetector_set, classify it as'non-self'. - Otherwise (if it is not "self" and not in the generated detector list), classify it as
'non-self'.
- Check each
Solución
¡Gracias por tus comentarios!
single
Pregunte a AI
Pregunte a AI
Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla
Can you explain this in simpler terms?
What are some examples related to this topic?
How does this information apply to real-life situations?
Genial!
Completion tasa mejorada a 6.25
Challenge: Implement Negative Selection Algorithm
Desliza para mostrar el menú
Swipe to start coding
In this challenge, you will implement a basic negative selection algorithm (NSA) for anomaly detection.
This algorithm is inspired by the human immune system, which learns to distinguish between self (normal) and non-self (foreign) patterns.
You are given a list of self_patterns representing normal data.
Your task is to implement two core functions:
- Generate detectors: in the
generate_detectorsfunction, you must:- Generate random
candidatepatterns. - Check if the
candidatepattern is in theself_set. - Only add the
candidateto thedetectorsset if it is not a "self" pattern.
- Generate random
- Classify patterns: in the
classify_patternsfunction, you must:- Check each
patternfrom thetest_patternslist. - If the
patternis in theself_set, classify it as'self'. - Else, if the
patternis in thedetector_set, classify it as'non-self'. - Otherwise (if it is not "self" and not in the generated detector list), classify it as
'non-self'.
- Check each
Solución
¡Gracias por tus comentarios!
single