Setting Parameters: Affinity
Well, that was not the result we were looking for. Can we improve it? Can we make the clustering algorithm learn to differ such structures?
The answer is yes - we need to set some parameters within the SpectralClustering
function. The parameter we should change is affinity
. This parameter defines how should affinity matrix be built (the math explanation of this is outside the scope of this course). By default, the parameter's value is 'rbf'
. If we want to differ the clusters with such a structure as in the previous chapter, we should consider the 'nearest_neighbors'
value of the parameter.
Swipe to start coding
- Import
SpectralClustering
function fromsklearn.cluster
. - Create a
SpectralClustering
model object with 4 clusters and set theaffinity
parameter to'nearest_neighbors'
. - Fit the
data
to themodel
and predict the labels. Save predicted labels as the'prediction'
column ofdata
. - Build the
seaborn
scatter plot with'x'
column ofdata
on the x-axis,'y'
column ofdata
on the y-axis for each value of'prediction'
. Then, display the plot.
Solución
¡Gracias por tus comentarios!
single
Pregunte a AI
Pregunte a AI
Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla
Resumir este capítulo
Explicar el código en file
Explicar por qué file no resuelve la tarea
Awesome!
Completion rate improved to 3.57
Setting Parameters: Affinity
Desliza para mostrar el menú
Well, that was not the result we were looking for. Can we improve it? Can we make the clustering algorithm learn to differ such structures?
The answer is yes - we need to set some parameters within the SpectralClustering
function. The parameter we should change is affinity
. This parameter defines how should affinity matrix be built (the math explanation of this is outside the scope of this course). By default, the parameter's value is 'rbf'
. If we want to differ the clusters with such a structure as in the previous chapter, we should consider the 'nearest_neighbors'
value of the parameter.
Swipe to start coding
- Import
SpectralClustering
function fromsklearn.cluster
. - Create a
SpectralClustering
model object with 4 clusters and set theaffinity
parameter to'nearest_neighbors'
. - Fit the
data
to themodel
and predict the labels. Save predicted labels as the'prediction'
column ofdata
. - Build the
seaborn
scatter plot with'x'
column ofdata
on the x-axis,'y'
column ofdata
on the y-axis for each value of'prediction'
. Then, display the plot.
Solución
¡Gracias por tus comentarios!
Awesome!
Completion rate improved to 3.57single