Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Setting Parameters: Affinity | Spectral Clustering
Cluster Analysis in Python

bookSetting Parameters: Affinity

Well, that was not the result we were looking for. Can we improve it? Can we make the clustering algorithm learn to differ such structures?

The answer is yes - we need to set some parameters within the SpectralClustering function. The parameter we should change is affinity. This parameter defines how should affinity matrix be built (the math explanation of this is outside the scope of this course). By default, the parameter's value is 'rbf'. If we want to differ the clusters with such a structure as in the previous chapter, we should consider the 'nearest_neighbors' value of the parameter.

Tarea

Swipe to start coding

  1. Import SpectralClustering function from sklearn.cluster.
  2. Create a SpectralClustering model object with 4 clusters and set the affinity parameter to 'nearest_neighbors'.
  3. Fit the data to the model and predict the labels. Save predicted labels as the 'prediction' column of data.
  4. Build the seaborn scatter plot with 'x' column of data on the x-axis, 'y' column of data on the y-axis for each value of 'prediction'. Then, display the plot.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 4. Capítulo 3
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Suggested prompts:

Resumir este capítulo

Explicar el código en file

Explicar por qué file no resuelve la tarea

close

Awesome!

Completion rate improved to 3.57

bookSetting Parameters: Affinity

Desliza para mostrar el menú

Well, that was not the result we were looking for. Can we improve it? Can we make the clustering algorithm learn to differ such structures?

The answer is yes - we need to set some parameters within the SpectralClustering function. The parameter we should change is affinity. This parameter defines how should affinity matrix be built (the math explanation of this is outside the scope of this course). By default, the parameter's value is 'rbf'. If we want to differ the clusters with such a structure as in the previous chapter, we should consider the 'nearest_neighbors' value of the parameter.

Tarea

Swipe to start coding

  1. Import SpectralClustering function from sklearn.cluster.
  2. Create a SpectralClustering model object with 4 clusters and set the affinity parameter to 'nearest_neighbors'.
  3. Fit the data to the model and predict the labels. Save predicted labels as the 'prediction' column of data.
  4. Build the seaborn scatter plot with 'x' column of data on the x-axis, 'y' column of data on the y-axis for each value of 'prediction'. Then, display the plot.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

close

Awesome!

Completion rate improved to 3.57
Sección 4. Capítulo 3
single

single

some-alt