Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Case 2: Four Distinct Clusters | K-Means Algorithm
Cluster Analysis in Python

bookCase 2: Four Distinct Clusters

Well, I think that the model did good work. But what if we try to divide the points into 4 groups?

Tarea

Swipe to start coding

  1. Import necessary libraries with their standard aliases. These are pandas (pd), matplotlib.pyplot (plt), seaborn (sns), and KMeans from sklearn.cluster.
  2. Create a KMeans model object with 4 clusters.
  3. Fit the data to the model.
  4. Predict the labels for data. Save the result within the 'prediction' column of data.
  5. Build scatter plot for 'x' and 'y' columns of data with each point being painted with respect to the 'prediction' column.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 1. Capítulo 5
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

close

Awesome!

Completion rate improved to 3.57

bookCase 2: Four Distinct Clusters

Desliza para mostrar el menú

Well, I think that the model did good work. But what if we try to divide the points into 4 groups?

Tarea

Swipe to start coding

  1. Import necessary libraries with their standard aliases. These are pandas (pd), matplotlib.pyplot (plt), seaborn (sns), and KMeans from sklearn.cluster.
  2. Create a KMeans model object with 4 clusters.
  3. Fit the data to the model.
  4. Predict the labels for data. Save the result within the 'prediction' column of data.
  5. Build scatter plot for 'x' and 'y' columns of data with each point being painted with respect to the 'prediction' column.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

close

Awesome!

Completion rate improved to 3.57
Sección 1. Capítulo 5
single

single

some-alt