Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Challenge: LOF in Practice | Density-Based Methods
Quizzes & Challenges
Quizzes
Challenges
/
Outlier and Novelty Detection in Python

bookChallenge: LOF in Practice

Tarea

Swipe to start coding

You are given a 2D dataset with clusters and some outliers. Your task is to apply Local Outlier Factor (LOF) from sklearn.neighbors to identify which samples are locally inconsistent (low-density points).

Steps:

  1. Import and initialize LocalOutlierFactor with n_neighbors=20, contamination=0.1.
  2. Fit the model on X and obtain predictions via .fit_predict(X).
  3. Extract negative outlier factor values (model.negative_outlier_factor_).
  4. Print the number of detected outliers and example scores.

Remember:

  • -1 = outlier;
  • 1 = inlier.

Solución

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 4. Capítulo 4
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

close

Awesome!

Completion rate improved to 4.55

bookChallenge: LOF in Practice

Desliza para mostrar el menú

Tarea

Swipe to start coding

You are given a 2D dataset with clusters and some outliers. Your task is to apply Local Outlier Factor (LOF) from sklearn.neighbors to identify which samples are locally inconsistent (low-density points).

Steps:

  1. Import and initialize LocalOutlierFactor with n_neighbors=20, contamination=0.1.
  2. Fit the model on X and obtain predictions via .fit_predict(X).
  3. Extract negative outlier factor values (model.negative_outlier_factor_).
  4. Print the number of detected outliers and example scores.

Remember:

  • -1 = outlier;
  • 1 = inlier.

Solución

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 4. Capítulo 4
single

single

some-alt