Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprende Missing and Wrong Data | Data Cleaning
Preprocessing Data

bookMissing and Wrong Data

As you already know, it is possible that raw data can contain some dirty data. It can be:

  • NaN: undefined or missing data.
  • empty strings.
  • infinite: very large data.
  • incorrect data: for example, 'Female' in the Price column, that contains numeric data (this value could be stored into the wrong cell accidentally). You may find impossible values of the user's age, for example, if this value should be entered by him manually (like -1, 110, 0, etc.).
  • outliers: critically small or big values(for example, 250 cm in the Height column, or 112 yrs in the Age column), usually in a small amount. They may affect your result of analysis or model weights, so sometimes it makes sense to remove them.

Let's learn how to 'clean' your data and not to lose some useful info.

¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

Sección 2. Capítulo 1
single

single

Pregunte a AI

expand

Pregunte a AI

ChatGPT

Pregunte lo que quiera o pruebe una de las preguntas sugeridas para comenzar nuestra charla

Suggested prompts:

Resumir este capítulo

Explicar el código en file

Explicar por qué file no resuelve la tarea

close

Awesome!

Completion rate improved to 5.56

bookMissing and Wrong Data

Desliza para mostrar el menú

As you already know, it is possible that raw data can contain some dirty data. It can be:

  • NaN: undefined or missing data.
  • empty strings.
  • infinite: very large data.
  • incorrect data: for example, 'Female' in the Price column, that contains numeric data (this value could be stored into the wrong cell accidentally). You may find impossible values of the user's age, for example, if this value should be entered by him manually (like -1, 110, 0, etc.).
  • outliers: critically small or big values(for example, 250 cm in the Height column, or 112 yrs in the Age column), usually in a small amount. They may affect your result of analysis or model weights, so sometimes it makes sense to remove them.

Let's learn how to 'clean' your data and not to lose some useful info.

Switch to desktopCambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?

¿Cómo podemos mejorarlo?

¡Gracias por tus comentarios!

close

Awesome!

Completion rate improved to 5.56
Sección 2. Capítulo 1
single

single

some-alt