Contenido del Curso
Identifying Fake News
Data Preprocessing
As a mandatory step in our analysis, we must preprocess our data. Data preprocessing is the process of cleaning, transforming, and organizing the data to make it more suitable for analysis and modeling. This typically involves several steps, such as the following:
- removing missing or duplicate values;
- correcting inconsistencies;
- transforming the data into a format that is easier to manage.
Tarea
- Remove unnecessary columns (for our further analysis):
'title'
,'subject'
, and'date'
. - Use the appropriate method to remove duplicates.
- Use the appropriate methods to shuffle the DataFrame and reset its index.
- Use the appropriate method to check for missing values (
NaN
values).
Mark tasks as Completed
Cambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
¿Todo estuvo claro?
¡Gracias por tus comentarios!
As a mandatory step in our analysis, we must preprocess our data. Data preprocessing is the process of cleaning, transforming, and organizing the data to make it more suitable for analysis and modeling. This typically involves several steps, such as the following:
- removing missing or duplicate values;
- correcting inconsistencies;
- transforming the data into a format that is easier to manage.
Tarea
- Remove unnecessary columns (for our further analysis):
'title'
,'subject'
, and'date'
. - Use the appropriate method to remove duplicates.
- Use the appropriate methods to shuffle the DataFrame and reset its index.
- Use the appropriate method to check for missing values (
NaN
values).
Mark tasks as Completed
Cambia al escritorio para practicar en el mundo realContinúe desde donde se encuentra utilizando una de las siguientes opciones
Sección 1. Capítulo 3
AVAILABLE TO ULTIMATE ONLY