Kursinhalt
Introduction to Neural Networks
Introduction to Neural Networks
2. Neural Network from Scratch
Single Neuron ImplementationChallenge: Creating a NeuronPerceptron LayersChallenge: Creating a PerceptronForward PropagationLoss FunctionBackward PropagationBackpropagation ImplementationModel TrainingChallenge: Training the PerceptronModel EvaluationChallenge: Evaluating the PerceptronNeural Network with scikit-learn
Challenge: Creating a Neuron
Aufgabe
Swipe to start coding
Your task is to implement the basic structure of a neuron by completing the missing parts.
- Initialize the weights (an array) and bias (a single number) with random values from a uniform distribution in range
[-1, 1)
using NumPy. - Compute the weighted sum of the inputs using the dot product, add the bias, and store the result in
input_sum_with_bias
. - Apply the sigmoid activation function to
input_sum_with_bias
to obtain the neuron's output.
Lösung
War alles klar?
Danke für Ihr Feedback!
Abschnitt 2. Kapitel 2
Challenge: Creating a Neuron
Aufgabe
Swipe to start coding
Your task is to implement the basic structure of a neuron by completing the missing parts.
- Initialize the weights (an array) and bias (a single number) with random values from a uniform distribution in range
[-1, 1)
using NumPy. - Compute the weighted sum of the inputs using the dot product, add the bias, and store the result in
input_sum_with_bias
. - Apply the sigmoid activation function to
input_sum_with_bias
to obtain the neuron's output.
Lösung
War alles klar?
Danke für Ihr Feedback!
Abschnitt 2. Kapitel 2