Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Compare Ridge and Lasso on Real Data | Regularization Fundamentals
Feature Selection and Regularization Techniques

bookChallenge: Compare Ridge and Lasso on Real Data

Aufgabe

Swipe to start coding

In this challenge, you will compare Ridge and Lasso regression on a real dataset to see how regularization strength affects model performance and coefficient magnitudes.

You will use the Diabetes dataset from scikit-learn, which is a standard regression dataset with 10 input features and a continuous target variable.

Your goals are:

  1. Load the dataset and split it into training and testing sets (70% / 30%).
  2. Fit two models:
    • A Ridge regression model with alpha=1.0
    • A Lasso regression model with alpha=0.1
  3. Evaluate both models using R² score and Mean Squared Error (MSE) on the test set.
  4. Compare their coefficients to observe how Lasso drives some coefficients toward zero (feature selection effect).
  5. Print the metrics and model coefficients for each model.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 4
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

Can you explain that in more detail?

What are the main benefits or drawbacks?

Can you provide an example?

close

Awesome!

Completion rate improved to 8.33

bookChallenge: Compare Ridge and Lasso on Real Data

Swipe um das Menü anzuzeigen

Aufgabe

Swipe to start coding

In this challenge, you will compare Ridge and Lasso regression on a real dataset to see how regularization strength affects model performance and coefficient magnitudes.

You will use the Diabetes dataset from scikit-learn, which is a standard regression dataset with 10 input features and a continuous target variable.

Your goals are:

  1. Load the dataset and split it into training and testing sets (70% / 30%).
  2. Fit two models:
    • A Ridge regression model with alpha=1.0
    • A Lasso regression model with alpha=0.1
  3. Evaluate both models using R² score and Mean Squared Error (MSE) on the test set.
  4. Compare their coefficients to observe how Lasso drives some coefficients toward zero (feature selection effect).
  5. Print the metrics and model coefficients for each model.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 4
single

single

some-alt