Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Object Detection with Custom Model and YOLO | Object Detection
Computer Vision Essentials
course content

Kursinhalt

Computer Vision Essentials

Computer Vision Essentials

1. Introduction to Computer Vision
2. Image Processing with OpenCV
3. Convolutional Neural Networks
4. Object Detection
5. Advanced Topics Overview

book
Challenge: Object Detection with Custom Model and YOLO

In this task, you'll dive into the world of object detection using deep learning. First, you'll build your own object detection model from scratch using Keras. Then, you'll load a pretrained YOLOv8 model and apply it to the same dataset.

Along the way, you'll:

  • Train a simple Keras-based object detector;

  • Load and run predictions with a YOLOv8 model trained on the same data;

  • Evaluate its performance on real validation images;

  • Compare results and understand the gap between custom models and state-of-the-art ones.

In the middle of the notebook, you'll reflect on why building detection models from scratch can be limiting — and briefly mention the importance of **transfer learning88 for practical applications.

question-icon

Complete the challenge and paste all parts of the key

1.  2.  3.  4.  5.  6.  7.  8.
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 4. Kapitel 8

Fragen Sie AI

expand
ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

course content

Kursinhalt

Computer Vision Essentials

Computer Vision Essentials

1. Introduction to Computer Vision
2. Image Processing with OpenCV
3. Convolutional Neural Networks
4. Object Detection
5. Advanced Topics Overview

book
Challenge: Object Detection with Custom Model and YOLO

In this task, you'll dive into the world of object detection using deep learning. First, you'll build your own object detection model from scratch using Keras. Then, you'll load a pretrained YOLOv8 model and apply it to the same dataset.

Along the way, you'll:

  • Train a simple Keras-based object detector;

  • Load and run predictions with a YOLOv8 model trained on the same data;

  • Evaluate its performance on real validation images;

  • Compare results and understand the gap between custom models and state-of-the-art ones.

In the middle of the notebook, you'll reflect on why building detection models from scratch can be limiting — and briefly mention the importance of **transfer learning88 for practical applications.

question-icon

Complete the challenge and paste all parts of the key

1.  2.  3.  4.  5.  6.  7.  8.
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 4. Kapitel 8
Wir sind enttäuscht, dass etwas schief gelaufen ist. Was ist passiert?
some-alt