Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Noise Reduction and Smoothing | Image Processing with OpenCV
Computer Vision Essentials

Swipe um das Menü anzuzeigen

book
Noise Reduction and Smoothing

Noise in images appears as unwanted graininess or distortion, often caused by low lighting, compression artifacts, or sensor limitations. Smoothing techniques help reduce noise while preserving important image details.

Gaussian Blurring (Smoothing Noise)

cv2.GaussianBlur function applies a Gaussian blur, which smooths the image by averaging pixel values using a Gaussian kernel (a weighted average that gives more importance to central pixels):

  • cv2.GaussianBlur(src, ksize, sigmaX):

    • src: the source image to be blurred;

    • ksize: kernel size in the format (width, height), both values must be odd (e.g., (5, 5));

    • sigmaX: standard deviation in the X direction; controls the amount of blur.

  • The function reduces image noise and detail by convolving the image with a Gaussian function, which is useful in tasks like edge detection or pre-processing before thresholding.

Median Blurring (Salt-and-Pepper Noise Removal)

cv2.medianBlur function applies a median filter, which replaces each pixel value with the median value of the neighboring pixels in the kernel window:

  • cv2.medianBlur(src, ksize):

    • src: the source image to be filtered;

    • ksize: size of the square kernel (must be an odd integer, e.g., 3, 5, 7).

  • The median blur is especially effective at removing salt-and-pepper noise, as it preserves edges while eliminating isolated noisy pixels.

Aufgabe

Swipe to start coding

You are given the image variable of the noisy image of the puppy: noisy puppy

  • Apply Gaussian Blur and store result in gaussian_blurred variable;
  • Apply Gaussian Blur and store result in median_blurred variable.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 4

Fragen Sie AI

expand
ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

book
Noise Reduction and Smoothing

Noise in images appears as unwanted graininess or distortion, often caused by low lighting, compression artifacts, or sensor limitations. Smoothing techniques help reduce noise while preserving important image details.

Gaussian Blurring (Smoothing Noise)

cv2.GaussianBlur function applies a Gaussian blur, which smooths the image by averaging pixel values using a Gaussian kernel (a weighted average that gives more importance to central pixels):

  • cv2.GaussianBlur(src, ksize, sigmaX):

    • src: the source image to be blurred;

    • ksize: kernel size in the format (width, height), both values must be odd (e.g., (5, 5));

    • sigmaX: standard deviation in the X direction; controls the amount of blur.

  • The function reduces image noise and detail by convolving the image with a Gaussian function, which is useful in tasks like edge detection or pre-processing before thresholding.

Median Blurring (Salt-and-Pepper Noise Removal)

cv2.medianBlur function applies a median filter, which replaces each pixel value with the median value of the neighboring pixels in the kernel window:

  • cv2.medianBlur(src, ksize):

    • src: the source image to be filtered;

    • ksize: size of the square kernel (must be an odd integer, e.g., 3, 5, 7).

  • The median blur is especially effective at removing salt-and-pepper noise, as it preserves edges while eliminating isolated noisy pixels.

Aufgabe

Swipe to start coding

You are given the image variable of the noisy image of the puppy: noisy puppy

  • Apply Gaussian Blur and store result in gaussian_blurred variable;
  • Apply Gaussian Blur and store result in median_blurred variable.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 4
Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
Wir sind enttäuscht, dass etwas schief gelaufen ist. Was ist passiert?
some-alt